期刊文献+

带跳混合分数布朗运动下利差期权定价 被引量:2

Pricing for Outer Performance Option in Mixed Fractional Brownian Motion with Jump
下载PDF
导出
摘要 在股票价格遵循带跳混合分数布朗运动过程假设下,得到了利差期权所满足的一般偏微分方程,并依据此偏微分方程获得了利差期权和互换期权定价公式.推广了关于Black-Schol-es期权定价的结论. Under the hypothesis that stock price obeys the fractional Brownian motion with jump, the gen- eral partial differential equation for outer performance option was presented, by which pricing formula of the outer performance option and exchange option were obtained. The result of Black - Scholes option pricing was general- ized.
作者 丰月姣
机构地区 大同大学
出处 《佳木斯大学学报(自然科学版)》 CAS 2012年第6期922-925,928,共5页 Journal of Jiamusi University:Natural Science Edition
关键词 带跳混合分数布朗运动 利差期权 交换期权 偏微分方程 fractional Brownian motion with jump outer performance option exchange option partialdifferential equation
  • 相关文献

参考文献11

  • 1薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 2Cont R, Tankov P. Financial Modelling with Jump Processes [M]. Chapman and Hall, London, 2004.
  • 3Sehoutens W. Levy Processes in Finance: Pricing Financial Derivatives[M]. Wiley, New York, 2003.
  • 4Ball C, Torous W. On Jumps in Common Stock Prices and their Impact on Call Option Pricing[J]. Finance, 1995, 40:155 - 173.
  • 5Corcuera J M, Nnalart D, Schoutens W. Completion of a Levy Market by Power - Jump Assets [ J ]. Finance Stochast. , 2005, 9:109 - 127.
  • 6Lueiano E, Sehoutens W. A Multivariate Jump - Driven Financial Asset Model[J]. Quantitative Finance, 2006, 6(5) : 385 -402.
  • 7Elliott R J, Hoek J. A General Fractional White Noise Theory and Applications to Finance [ J ]. Mathematical Finance, 2003, 13 (2) : 301 -330.
  • 8Benth F E. On Arbitrage - Free Pricing of Weather Derivatives based on Fractional Brewnian Motion [ J ]. Applied Mathematical Finance, 2003, 10 (4): 303-324.
  • 9Bjork T, Hult H. A Note on Wick Products and the Fractional Black- Scholes Model [ J]. Finance and Stochastics, 2005, 9 (2) : 197 -209.
  • 10Guasoni P. No Arbitrage under Transaction Costs, with Fractional Brownian Motion and Beyond[ J]. Mathematical Finance, 2006, 16(3) : 569 -582.

二级参考文献7

共引文献11

同被引文献1

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部