摘要
针对具有建模误差和不确定干扰的多关节机械臂的轨迹跟踪问题,设计反演非奇异终端神经滑模控制。该方案是采用能有限时间收敛的非奇异终端滑模面,根据滑模控制原理和反演方法设计反演滑模控制器;对于反演滑模控制系统中由于建模误差和不确定干扰造成的不确定因素的上界,设计径向基(Radial basis function,RBF)神经网络自适应律,在线估计不确定因素的上界;利用李亚普诺夫定理证明了系统的稳定性。仿真结果表明,该方法具有良好的轨迹跟踪性能,提高对于建模误差和不确定干扰等因素的鲁棒性,削弱了抖动。
A new method of nonsingular terminal neural network sliding control based on backstepping for tracking control of multi-link robot manipulators with modeling error and external disturbances is introduced. Nonsingular terminal sliding mode surface is used which has property of finite-time convergence. According to sliding mode control theory, backstepping is used to design nonsingular terminal sliding mode controller. To confn'm the upper bound of uncertainties in sliding-mode control system, a proper radial basis function neural networks controller is designed to estimate uncertain upper boundary on line. The system stability is proved by Lyapunov principle simulation results verify that this method improves the performances of trajectory tracking, enhances the robustness to modeling error and external disturbances and reduces chattering.
出处
《机械工程学报》
EI
CAS
CSCD
北大核心
2012年第23期36-40,共5页
Journal of Mechanical Engineering
基金
福建省自然科学基金资助项目(2009J01257)
关键词
非奇异终端
滑模控制
神经网络
反演控制
抖动
Nonsingular terminal
Sliding mode control
Neural networks
Backstepping control
Chattering