期刊文献+

磁盘速度与容纳系数对硬盘气膜静态特性的影响 被引量:2

Effects of Disk Velocity and Accommodation Coefficients on Static Characteristics of Air Bearing Films in Hard Disk Drives
下载PDF
导出
摘要 随着硬盘(Hard disk drives,HDDs)中浮动块与磁盘间飞行高度的降低,气体分子与磁头/磁盘间的交互作用逐渐增强,磁盘速度及容纳系数(Accommodation coefficients,ACs)对气膜承载特性的影响越来越重要。采用一种无网格法—最小二乘有限差分(Least square finite difference,LSFD)法,对简化的分子气膜润滑(Molecular gas film lubrication,MGL)方程进行求解,研究了磁盘速度、磁头和磁盘表面ACs对HDDs超低飞高气膜静态特性的影响。数值结果表明:对称性分子交互作用时,磁头和磁盘表面ACs对气膜静态特性的影响明显;非对称性分子交互作用时,磁盘表面ACs对气膜静态特性的影响较大,而磁头/浮动块表面ACs的影响较小;不同ACs条件下,随着磁盘速度或最小飞行高度的增加,压力幅值点位置的变化较均匀。 As the spacing between the flying head/slider and the rotating disk in hard disk drives (HDDs) continues to decrease, the interaction between the molecular gas and the surfaces of the disk and the head/slider becomes significant. The influence of disk velocity and accommodation coefficients (ACs) at slider and disk surfaces are important factors to govern the static characteristics of air bearing films. A simplified molecular gas film lubrication (MGL) equation is solved by using a mesh-less method, called least square finite difference (LSFD) method. Effects of the ACs on static characteristics of the air bearing film in HDDs with different disk velocities and ultra-low flying heights are investigated. Numerical results show that effects of ACs at slider and disk surfaces on the static characteristics are obvious for the case of symmetric molecular interaction. The effects of ACs at the disk surface on the static characteristics are obvious for the case of non-symmetric molecular interaction, while effects of ACs at the slider surface on the static characteristics are weak. The position of the maximum pressure changes uniformly with the increase of the disk velocity or the minimum flying height under different conditions of ACs.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第23期95-101,共7页 Journal of Mechanical Engineering
基金 国家自然科学基金(51275279) 山东省自然科学基金(ZR2012EEM015) 教育部留学回国人员科研启动基金 摩擦学国家重点实验室开放基金(SKLTKF11A04)资助项目
关键词 硬盘存储器 分子气膜润滑方程 容纳系数 气膜 无网格法 Hard disk storage Molecular gas film lubrication equation Accommodation coefficient Gas bearings film Meshless method
  • 相关文献

参考文献14

  • 1JUANG J Y, BOGY D B, BHATIA C S. Alternate air bearing slider designs for areal density of 1 Tbit/in2[J]. IEEE Transactions on Magnetics, 2007, 42 (2): 241-246.
  • 2SHI Baojun, LI Hongqiu, SHU Dongwei, et al. Nonlinear air-beating slider modeling for hard disk drives with ultra-low flying heights[J]. Communications in Numerical Methods in Engineering, 2009, 25(10): 1041-1054.
  • 3SHI Baojun, YANG Tingyi. Simplified model of Reynolds equation with linearized flow rate for ultra-thin gas film lubrication in hard disk drives[J]. Microsystem Technologies, 2010, 16. 1727-1734.
  • 4王玉娟,陈云飞,庄苹,颜景平.表面粗糙度对磁头磁盘系统静特性的影响[J].机械工程学报,2002,38(1):22-26. 被引量:9
  • 5SHEN Rulin ZHOU Li ZHONG Jue.SUB-NANOMETER POLISHING OF MAGNETIC RIGID DISK HEADS TO AVOID POLE TIP RECESSION[J].Chinese Journal of Mechanical Engineering,2008,21(4):7-10. 被引量:2
  • 6LEI Hong,LUO Jianbin,LU Xinchun.TWO STEPS CHEMICAL-MECHANICAL POLISHING OF RIGID DISK SUBSTRATE TO GET ATOM-SCALE PLANARIZATION SURFACE[J].Chinese Journal of Mechanical Engineering,2006,19(4):496-499. 被引量:11
  • 7FUKUI S, KANEKO R. A database for interpolation of Poiseuille flow rates for high Knudsen number lubrication problems[J]. ASME Journal of Tribology, 1990, 112: 78-83.
  • 8KANG S C. A kinetic theory description for molecular lubrication[D]. USA: Carnegie Mellon University, 1997.
  • 9HUANG Weidong, BOGY D B. The accommodation coefficient on slider air effect of bearing simulation[J]. ASME Journal of Tribology, 2000, 122: 427-435.
  • 10LI Wanglong. A database for interpolation of Poiseuille flow rate for arbitrary Knudsen number lubrication problems[J]. Journal of Chinese Institute of Engineers, 2003, 26(4): 455-466.

二级参考文献37

  • 1雷红,雒建斌,屠锡富,方亮.计算机硬盘基片的亚纳米级抛光技术研究[J].机械工程学报,2005,41(3):117-122. 被引量:21
  • 2李秀娟,金洙吉,苏建修,康仁科,郭东明.铜布线化学机械抛光技术分析[J].中国机械工程,2005,16(10):896-901. 被引量:5
  • 3LEI Hong,LUO Jianbin,LU Xinchun.TWO STEPS CHEMICAL-MECHANICAL POLISHING OF RIGID DISK SUBSTRATE TO GET ATOM-SCALE PLANARIZATION SURFACE[J].Chinese Journal of Mechanical Engineering,2006,19(4):496-499. 被引量:11
  • 4[1]White J W. Surface roughness effects on the load carrying capacity of very thin compressible lubricating films. ASME Journal of Lubrication Technology, 1980, 12:445~451
  • 5[2]Tonder K. A numerical assessment of the effect of striated roughness on gas lubrication. ASME Journal of Tribology, 1984, 106:315~321
  • 6[3]Greengard C. Large bearing numbers and stationary Reynolds roughness. ASME Journal of Tribology, 1989, 111:136~141
  • 7[4]Mitsuya Y, Ohkubo T, Ota H. Averaged Reynolds equation extended to gas lubrication possessing surface roughness in the slip flow regime:approximate method and confirmation experiments. ASME Journal of Tribology, 1989, 111:495~503
  • 8[5]Bhushan B, Tonder K. Roughness-induced shear-and squeeze-film effects in magnetic recording-part 1:analysis. ASME Journal of Tribology, 1989a, 111:220~227
  • 9[6]Bhushan B, Tonder K. Roughness-induced shear-and squeeze-film effects in magnetic recording-part 1:analysis. ASME Journal of Tribology, 1989b, 111:228~237
  • 10[7]Mitsuya Y, Hayashi T. Numerical study of film thickness averaging in compressible lubricating films incurring stationary surface roughness. ASME Journal of Tribology, 1990, 112:230~237

共引文献23

同被引文献17

  • 1王红志,黄平,孟永钢,温诗铸.磁头/磁盘气体润滑特性计算与分析[J].摩擦学学报,2006,26(4):358-361. 被引量:6
  • 2SOENO Y, MORIYA M, ITO K, et al. Feasibility of discrete track perpendicular media for high track density recording[J].IEEE Transactions on Magnetics, 2003, 39(4): 1967-1971.
  • 3WACHENSCHWANZ D, JIANG W, RODDICK E, et al. Design of a manufacturable discrete track recording medium[J].IEEE Transactions on Magnetics, 2005, 41(2): 670-675.
  • 4ALBRECHT T R, ARORA H, AYANOOR-VITIKKATE V, et al. Bit patterned magnetic recording: theory, media fabrication, and recording performance[J].IEEE Transactions on Magnetics, 2015, 51(5): 1-44.
  • 5ALBRECHT T R, BEDAU D, DOBISZ E, et al. Bit patterned media at 1 Tdot/in2 and beyond[J].IEEE Transactions on Magnetics, 2013, 49(2): 773-778.
  • 6HWANG C C, FUNG R F, YANG R F, et al. A new modified Reynolds equation for ultrathin film gas lubrication[J].IEEE Transactions on Magnetics, 1996, 32(2): 344-347.
  • 7HU Y, BOGY D B. Solution of the rarefied gas lubrication equation using an additive correction based multigrid control volume method[J].ASME Journal of Tribology, 1998, 120(1): 280-288.
  • 8DUWENSEE M, SUZUKI S, LIN J, et al. Air bearing simulation of discrete track recording media[J].IEEE Transactions on Magnetics, 2006, 42(10): 2489-2491.
  • 9DUWENSEE M, SUZUKI S, LIN J, et al. Simulation of the head disk interface for discrete track media[J].Microsystem Technologies, 2007, 13(8): 1023-1030.
  • 10LI Hui, ZHENG Hao, YOON Y, et al. Air bearing simulation for bit patterned media[J].Tribology Letters, 2009, 33: 199-204.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部