期刊文献+

基于网格变形技术的白车身多目标形状优化 被引量:29

Multi-Objective Shape Optimization of Body-in-White Based on Mesh Morphing Technology
下载PDF
导出
摘要 市场的竞争压力促使汽车厂商致力于加快车身开发的进程,而基于计算机辅助工程(Computer aided engineering,CAE)的车身结构优化技术由此而成为业内的研究热点。与传统的尺寸优化不同,形状优化在工程优化中具有更大的潜力。将网格变形技术引入形状优化,提出基于近似模型的多目标形状优化方法。利用网格变形技术定义形状变量,并根据灵敏度信息筛选优化变量;采用优化拉丁方试验设计对设计空间均匀分布样本点,进一步拟合高精度的Kriging模型;运用多目标粒子群算法,保持其余性能指标满足预期的前提下,以白车身弯曲刚度和质量为目标进行优化。研究表明,所提出的优化方法成功用于白车身的多目标优化,设计者可根据优化结果权衡各个目标,以指导最终的决策。 The fierce competition within the automotive industry requires manufacturers to shorten their development time for a new body,and the CAE-based optimization techniques are arousing wide attention.Compared with traditional size optimization,shape optimization in engineering optimization has greater potential.As a result,mesh morphing technology is first introduced into shape optimization,and a metamodel-based multi-objective shape optimization methodology is presented.Mesh morphing technology is employed to define the shape variables which are then screened through sensitivity analysis.An optimal Latin hypercube sampling is utilized to generate uniformly distributed sample points for fitting the Kriging models with high accuracies.A multi-objective particle swarm algorithm is adopted to perform the optimization where the mass and bending stiffness are defined as the objective functions while maintaining other performance indicators.The conclusion can be drawn that the proposed methodology is used to perform the multi-objective optimization for body-in-white successfully,and engineers can handle the trade-off between the objectives for guiding the decision-making.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2012年第24期119-126,共8页 Journal of Mechanical Engineering
基金 上海汽车工业科技发展基金资助项目(1101)
关键词 网格变形 形状优化 多目标粒子群算法 KRIGING模型 Mesh morphing Shape optimization Multi-objective particle swarm algorithm Kriging model
  • 相关文献

参考文献25

  • 1JANG G W, CHOI Y M, CHOI G J. Discrete thickness optimization of an automobile body by using the continuous-variable-based method[J]. Journal of Mechanical Science and Technology, 2008, 22(1): 41-49.
  • 2ADL A H, PANAHI M S. Multi-objective optimal design of a passenger car's body[C]//Proceedings of the ASME 10th Biennial Conference on Engineering Systems Design and Analysis, July 12-14, 2010, Istanbul, Turkey. 2010: 277-286.
  • 3KOGL M, KLIMETZEK F R, PLETSCHEN B, et al. Multidisciplinary optimization of body-in-white[J]. Simvec-Numerical Analysis and Simulation in Vehicle Engineering, 2008, 2031: 721-744.
  • 4ZHU P, ZHANG Y, CHEN G L, et al. Metamodel-based lightweight design of an automotive front-body structure using robust optimization[C]// Proceedings of the Institution of Mechanical Engineers, Part D-Journal of Automobile Engineering September 1, 2009, 223(D9): 1133-1147.
  • 5BARR A H. Global and local deformation of solid primitives[J]. Computer Graphics, 1984, 18(3): 21-30.
  • 6SEDERBERG T W, PARRY P S. Free-form deformation of solid geometric models[J]. Computer Graphics, 1986, 20(4): 151-160.
  • 7HSIAO S W, LIU M C. A morphing method for shape generation and image prediction in product design[J]. Design Studies, 2002, 23(6): 533-556.
  • 8PADMANABAN R, Krishnan R. Multi-disciplinary optimization of a sport utility vehicle[R]. SAE, 2004-05AE-271, 2004.
  • 9UIKEY D, EVANS D A, ABAD S, et al. Design exploration of bumper systems using advanced CAE techniques[R]. SAE, 2005-01-1340, 2005.
  • 10NARAYANAN A, EINSTEIN A. Morphing and parametrization technologies for cfd applications[R]. SAE, 2007-01-0597, 2007.

二级参考文献22

  • 1张峻,柯映林.序列响应面方法在覆盖件成形过程优化中的应用研究[J].汽车工程,2005,27(2):246-250. 被引量:20
  • 2陈涛,李光耀.覆盖件拉延模工艺补充及压料面的参数化设计新方法[J].机械工程学报,2006,42(5):69-74. 被引量:24
  • 3OHATA T, NAKAMURA Y, KATAYAMA T, et al. Development of optimum process design system by numerical simulation[J]. Journal of Materials Processing Technology, 1996, 60: 543-548.
  • 4NACEUR H, GOU Y Q, BATOZ J L, et al. Optimization of blank restraining forces to improve the global quality of stamping parts[C]//Proceedings of the Fourth International Conference on Numerical Simulation, NUMISHEET'99, Besancon, France, 1999: 517-521.
  • 5YANG R J, GU L. Application of descriptive sampling and metamodeling methods for optimal design and robustness of vehicle structures[J]. AIAA, 2002, 1 321: 1-7.
  • 6KOCH P N, YANG R J, GU L. Design for six sigma through robust optimization[J]. Struct. Multidist. Optim., 2004, 26: 235-248.
  • 7KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proc. IEEE International Conference on Neural Networks, Piscataway, NJ: IEEE Press, 1995: 1 942-1 948.
  • 8EBERHART R C, SHI Y. Particle swarm optimization: Developments, applications and resources[C]//Proc, of Congress on Evolutionary Computation 2001, Piscataway, NJ: IEEE Press, 2001: 81-86.
  • 9PARSOPOULOS K E, VARHATIS M N. Particle swarm optimization method in multiobjective problems[C]//Proc of ACM Symp. on Applied Computing, Madrid: ACM Press, 2002: 603-607.
  • 10HU X, EBERHART R C. Multiobjective using dynamic neighborhood particle swarm optimization[C]//Proc, of Congress Evolutionary Computation, Honolulu, Hawaii, USA, Piscataway, NJ: IEEE Press, 2002:1 677-1 681.

共引文献35

同被引文献368

引证文献29

二级引证文献503

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部