期刊文献+

7050铝合金施加超声铸造的数值模拟 被引量:5

Numerical Simulation for 7050 Aluminum Alloy Cast with Ultrasonic Treatment
下载PDF
导出
摘要 利用流体力学软件Fluent及动网格技术,以多相流模型中的混合物模型(Mixture)为基础,并耦合空化模型,对不同功率超声作用下7050铝合金熔体所产生的空化效应及铸造组织进行了数值模拟,并通过超声铸造试验进行了验证。结果表明:随着超声时间的延长,熔体中的空化区域逐渐扩大,并逐步向变幅杆端面中心集中;超声功率越大,空化强度越高,对铸态组织的细化效果越明显;模拟结果与试验结果基本吻合。 Using the mixture model and the cavitation model of Fluent, the ultrasonic cavitation effect and cast microstructure at different ultrasonic powers for 7050 aluminum alloy melt was simulated, and then was analysed through casting experiment with ultrasonic treatment(UST). The results show that the cavitation region in melt expanded gradually with the increase of the ultrasonic treatment time, and concentrated on the center of horn surface gradually. The higher the ultrasonic power and cavitation strength were, the refiner the microstructure was. The simulated results matched the experimental results.
作者 张立华 朱彪
出处 《机械工程材料》 CAS CSCD 北大核心 2013年第1期85-88,92,共5页 Materials For Mechanical Engineering
基金 国家“973”计划资助项目(2010CB731700)
关键词 7050铝合金 超声 铸造 空化效应 数值模拟 7050 aluminum alloy ultrasound cast cavatition effect numerical simulation
  • 相关文献

参考文献3

  • 1ESKIN G I. Ultrasonic treatment of light alloy melts[M]. Moscow: Gordon and Breach Science Pubulishers, 1998.
  • 2SINGHAL A K,ATHAVALE A M,LI Hui-ying,et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002,9 : 1-8.
  • 3谢恩华,李晓谦.超声波熔体处理过程中的声流现象[J].北京科技大学学报,2009,31(11):1425-1429. 被引量:16

二级参考文献12

  • 1Eskin G I. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason Sonochem, 2001, 8(3) :319.
  • 2Liu X, Osawa Y, Takamori S, et al. Microstructure and mechanical properties of AZ91 alloy produced with ultrasonic vibration. Mater SciEngA, 2008, 487(1):120.
  • 3Eskin G I. Principles of ultrasonic treatment application for light alloys melts. AdvPerform Mater, 1997, 4:223.
  • 4Li Y L, Fang H K, Cao F R, et al. Effect of high density ultrasonic on the microstructure and refining property of Al-5Ti-0.25C grain refiner alloy. Mater Sci Eng A, 2008, 487(2) :518.
  • 5Jian X, Xu H, Meek T T, et al. Effect of power ultrasound on solidification of aluminum A356 alloy. Mater Lett, 2005, 59 (2) : 190.
  • 6Han Y, Li K, Wang J, et al. Influence of high-intensity ultrasound on grain refining performance of Al-5Ti-IB master alloy on aluminium. Mater Sci Eng A, 2005, 405 : 306.
  • 7Kumar A, Kumaresan T, Pandit A B, et al. Characterization of flow phenomena induced by ultrasonic horn. Chem Eng Sci, 2006, 61:7410.
  • 8Cosgrove J A, Buick J M, Pye S D, et al. PIV applied to Eckart streaming produced by a medical ultrasound transducer. Ultrasonics, 2001, 39:461.
  • 9Madelin G, Grucker D, Franconi J M, et al. Magnetic resonance imaging of acoustic streaming: absorption coefficient and acoustic field shape estimation. Ultrasonics, 2006, 44:272.
  • 10Frenkel V, Gurka R, Liberzon A, et al. Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry. Ultrasonics, 2001, 39:153.

共引文献15

同被引文献41

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部