期刊文献+

肿瘤微环境对蕈样肉芽肿生物学行为的影响 被引量:4

Effects of tumor microenvironment on biological behavior of mycosis fungoides
原文传递
导出
摘要 蕈样肉芽肿是原发于皮肤的、具有独特临床表现、组织病理、免疫表型和遗传特征的皮肤T细胞淋巴瘤。蕈样肉芽肿肿瘤微环境由肿瘤细胞、局部浸润的免疫细胞、间质细胞及其所分泌的细胞因子等组成。树突细胞(包括朗格汉斯细胞)在蕈样肉芽肿发展的不同阶段发挥着双向作用,成熟树突细胞介导了抗肿瘤免疫反应,未成熟树突细胞诱导了免疫耐受反应。调节性T细胞与Th17细胞的功能失衡也决定了蕈样肉芽肿的进程,细胞因子特别是趋化因子在蕈样肉芽肿亲表皮现象中发挥重要作用,白介素10导致局部免疫抑制与蕈样肉芽肿预后密切相关。肿瘤微环境的改变决定了蕈样肉芽肿的病程发展规律与生物学行为。 Mycosis fungoides (MF) is a T-cell lymphoma originating in the skin with distinct clinical and histopathologlcal manifestations, immunophenotype, and genetic features. The tumor microenvironment in MF consists of tumor ceils, locally infiltrating immune cells, mesenchymal cells and cytokines secreted by these cells. Dendritic cells (DCs), including Langerhans cells, perform a dual role in the development of MF. It is considered that mature DCs mediate anti-tumor immune response, while immature DCs induce tumor tolerance. The balance between the function of regulatory T cells and T helper 17 cells also affects the progression of MF. Cytokines, especially chemokines, play an important role in the epidermotropism in MF, and interleukin 10 has an impact on the prognosis of MF via inducing local immunosuppression. Therefore, tumor microenvironment determines the unique course and biological behavior of MF.
作者 黎钊 王平
出处 《国际皮肤性病学杂志》 2013年第1期35-38,共4页 International Journal of Dermatology and Venereology
关键词 蕈样肉芽肿 肿瘤 树突细胞 T淋巴细胞亚群 细胞因子类 Mycosis fungoides Neoplasms Dendritic cells T-lymphocyte subsets Cytokines
  • 相关文献

参考文献28

  • 1Olsen E, Vonderheid E, Pimpinelli N, et al. Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC). Blood, 2007, 110(6): 1713-1722.
  • 2Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem, 2007, 101 (4): 851-861.
  • 3Mohla S. Tumor microenvironment. J Cell Biochem, 2007, 101 (4): 801-804.
  • 4Der-Petrossian M, Valencak J, Jonak C, et al. Dermal infiltrates of cutaneous T-cell lymphomas with epidermotropism but not other cutaneous lymphomas are abundant with langefin+ dendritic cells. J Eur Acad Dermatol Venereol, 2011, 25(8): 922-927.
  • 5Luftl M, Feng A, Lieha E, Schuler G.Dendritie cells and apoptosis in mycosis fungoides, Br J Dermatol. 2002,147 (6): 1171-1179.
  • 6Schwingshackl P, Obermoser G, Nguyen VA, et al. Distribution and maturation of skin dendritic cell subsets in two forms of cutaneous T-cell lymphoma: mycosis fungoides and SSzary syndrome. Acta Derm Venereol, 2012, 92 (3): 269-275.
  • 7Ni X, Duvic M. Dendritic ceils and cutaneous T-cell lymphomas. G Ital Dermatol Venereol, 2011, 146(2): 103-113.
  • 8Hwang ST, Janik JE, Jaffe ES, et al. Mycosis fungoides and Sezary syndrome. Lancet, 2008, 371(9616): 945-957.
  • 9Dobbeling U. Transcription factor profiling shows new ways towards new treatment options of cutaneous T cell lymphomas. Curr Drug Discov Technol, 2007, 4( 1 ): 24-30.
  • 10Yao X, Ahmadzadeh M, Lu YC, et al. Levels of peripheral CD4^+ FoxP3^+ regulatory T cells are negatively associated with clinical response to adoptive immunotherapy of human cancer. Blood, 2012, 119(24): 5688-5696.

二级参考文献56

  • 1沈立松,李美星,葛海良.Foxp3对CD4^+CD25^+调节性T细胞中基因的调控作用[J].现代免疫学,2009,29(1):72-75. 被引量:6
  • 2Power CA, Meyer A, Nemeth K, Bacon KB, Hoogewerf AJ, Proudfoot AE, et al. Molecular-cloning and functional expression of a novel CC-chemokine receptor cDNA from a human basophilic cell-line [J]. J Biol Chem, 1995, 270 (33), 19495-19500.
  • 3Wang Y, Zhang Y, Yang X, Han W, Liu Y, Xu Q, et al. Chemokine-like factor I is a functional ligand for CC chemokine receptor4 (CCR4) [J]. LifeSci, 2006, 78(6) : 614-621.
  • 4lmai T, Chantry D, Raport CJ, Wood CL, Nishimura M, Godiska R, et al. Macrophage-derived chemokine is a functional ligand for the CC chemokine receptor 4 [J]. J Biol Chem, 1998, 273(3) : 1764-1768.
  • 5Ishida T, Ueda R. CCR4 as a novel molecular target for immunotherapy of cancer [ J ] . Cancer Sci, 2006, 97 ( 11 ) : 1139-1146.
  • 6Woo EY, Yeh H, Chu CS, Schleinger K, Carroll RG, Riley JL, et al. Regulator, T cells from lung cancer patients directly inhibit autologous T cell proliferation [ J]. J Immunol, 2002, 168 (9) : 4272 -4276.
  • 7Levings MK, Sangregorio R, Sartirana C, Moschin AL, Battaglia M, Orban PC, et al. Human CD25 ( + ) CD4 ( + ) T suppressor cell clones produce transforming growth factor beta, but not interleukin 10, and are distinct from type 1 T regulatory cells [ J]. J Exp Med, 2002, 196(10): 1335-1346.
  • 8Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4 ( + ) CD25 ( + ) regulatory T eells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative [ J ]. Eur J hnmunol, 2004, 34(2) : 336-344.
  • 9Zhai Y, Ghobrial RM, Busuttil RW, Kupiec-Weglinski JW. Th1 and Th2 cytokines in organ transplantation: Paradigm lost [ J]. Crit Rev Immunol, 1999, 19(2) : 155-172.
  • 10Ohshima K, Kanabe K, Kawano R, Tsuchiya T, Suefuji H, Yamaguchi T, et al. Classification of distinct subtypes of peripheral T-cell lymphoma unspecified, identified by chemokine and chemokine receptor expression : Analysis of prognosis [ J]. Int J Oncol, 2004, 25(3) : 605-613.

共引文献6

同被引文献20

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部