期刊文献+

超顺磁性磷酸钙复合支架的制备及性能研究 被引量:2

Preparation and Properties of Supermagnetic Calcium Phosphate Composite Scaffold
下载PDF
导出
摘要 采用共混-真空烧结方法制备了一系列超顺磁性磷酸钙复合支架,通过SEM、EDS、XRD和VSM等手段对所制备的材料性能进行表征,并考察了其在水中的稳定性以及Ros17/2.8细胞在材料表面的黏附生长情况。结果表明:该方法所制备的超顺磁性复合支架具有多级连通孔结构,磁性纳米颗粒在基体中分布均匀,结合牢固且复合量精确可控,在水中具有良好的稳定性。真空烧结避免了磁性纳米颗粒在烧结过程中发生氧化和相变,使复合支架继续保持超顺磁性并具有良好的磁性能,且该磁性支架有利于细胞的黏附和生长,具有较好的生物相容性,在组织工程中有潜在的应用前景。 Supermagnetic calcium phosphate composite scaffold was fabricated by merging the superparamagnetic iron oxide (SPIO) into the calcium phosphate scaffold, and then sintered in vacuum. Properties of the obtained magnetic scaffold were investigated by SEM, EDS, XRD and VSM, The stability of magnetic scaffold in water was assessed and Ros17/2.8 cells were cultured on the samples to evaluate the cell adhesion on the scaffold. The results demonstrated that the magnetic scaffold had a porous structure. The magnetic nanoparticles were uniformly distributed and firmly merged into the matrix. The content of magnetic nanoparticles could be accurately tuned, and the magnetic scaffold is stable in water. The composite scaffold maintained excellent magnetic properties, as the vacuum sintering procedure avoided the oxidation and phase transition of the magnetic nanoparticles. It is proposed that the magnetic materials might be a kind of potential bone tissue engineering scaffold in the future.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第1期79-84,共6页 Journal of Inorganic Materials
基金 国家自然科学基金(31070849) 四川省科技支撑计划(2009SZ0137) 国家重点基础研究发展规划(2012CB619103)~~
关键词 真空烧结 超顺磁性四氧化三铁 磷酸钙 组织工程支架 生物相容性 vacuum sintering superparamagnetic iron oxide calcium phosphate tissue engineering scaffold biocompatibility
  • 相关文献

参考文献23

  • 1Bassett C A L, Schink-Ascani M, Lewis S M. Effects of pulsed electromagnetic fields on steinberg ratings of femoral head osteonecrosis. Clin. Orthop. Relat. Res., 1989, 185(246): 172-185.
  • 2Santini M T, Rainaldi G, Ferrante A, et al. Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (mg-63 and saos-2). Bioelectromagnetics, 2003, 24(5): 327-338.
  • 3McLeod K J, Collazo L. Suppression of a differentiation response in MC-3T3-E1 osteoblast-like cells by sustained, low-level, 30 Hz magnetic-field exposure. Radiation Research, 2000, 153(5): 706-714.
  • 4Jansen J, van der Jagt O, Punt B, et al. Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study. BMC Musculoskeletal Disorders, 2010, 23(11): 188-1-11.
  • 5Fini M, Cadossi R, Cane V, et al. The effect of pulsed electromagnetic fields on the osteointegration of hydroxyapatite implants in cancellous bone: a morphologic and microstructural in vivo study. J. Orthop. Res., 2002, 20(4): 756-763.
  • 6Zhang X Y, Xue Y, Zhang Y. Effects of 0.4 T rotating magnetic field exposure on density, strength, calcium and metabolism of rat thigh bones. Bioelectromagnetics, 2006, 27(1): 1-9.
  • 7Chang K, Chang W H. Pulsed electromagnetic fields prevent osteoporosis in an ovariectomized female rat model: a prostaglandin E2-associated process. Bioelectromagnetics, 2003, 24(3): 189-198.
  • 8Taylor K F, Inoue N, Rafiee B, et al. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J. Orthop. Res., 2006, 24(1): 2-10.
  • 9Wang L, Yang Z, Gao J, et al. A biocompatible method of decorporation:? bisphosphonate-modified magnetite nanoparticles to remove uranyl ions from blood. J. Am. Chem. Soc., 2006, 128(41): 13358-13359.
  • 10Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. J. Am. Chem. Soc., 2005, 128(3): 688-689.

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部