期刊文献+

平方误差和LINEX损失函数下逆Rayleigh分布参数的经验Bayes估计 被引量:6

下载PDF
导出
摘要 在平方误差和LINEX损失函数下,导出了逆Rayleigh分布参数的极大似然估计、Bayes估计和经验Bayes估计,并给出了Monte Carlo数值模拟比较结果。
作者 李兰平
出处 《统计与决策》 CSSCI 北大核心 2013年第1期81-83,共3页 Statistics & Decision
  • 相关文献

参考文献10

  • 1Voda, V. G. On the Inverse Rayleigh Distributed Random Variable[J].Rep.Statist. App. Res., JUSE, 1972,(19).
  • 2Mukherjee, S.P. , Maiti, S.S. A Percentile Estimator of the Inverse Rayleigh Parameter[J].IAPQR Transactions,1997, (21).
  • 3Abdel-Monem, A. A. Estimation and Prediction for the Inverse Ray- liegh Life Distribution. M.Sc. Thesis[D]. Faculty of Education, Ain Shames University,2003.
  • 4E1-Helbawy, A. A. , Abd-E1-Monem. Bayesian Estimation and Pre- diction for the Inverse Rayleigh Lifetime Distribution. Proceeding of the 40th Annual Conference of Statistics [C].Computer Sciences and Operation Research, ISSR, Cairo University, 2005.
  • 5Rosaiah K. , Kantam R.R.L. Acceptance Sampling Based on the In- verse Rayleigh Distribution [J].Economic Quality Control, 2005,20(2).
  • 6Estimation and Prediction from Inverse Rayleigh Distribution Based on Lower Record Values[J]. Applied Mathematical Sciences, 2010,4 (62).
  • 7李凤,师义民,田亚爱.逐步增加Ⅱ型截尾下Weibull分布的Bayes估计[J].工程数学学报,2008,25(4):641-650. 被引量:20
  • 8Jaheen, Z. F. Empirical Bayes Analysis of Record Statistics Based on LINEX and Quadratic Loss Functions.[J] Computers and Mathematics with Applications,2004,(47).
  • 9Li X.C., Shi Y.M., Wei J.Q. Empirichl Bayes Estimators of Reliability Performances Using LINEX Loss under Progressively Type-II Censored Samples[J].Mathematics and Computers in Simulation,2007,(73).
  • 10Sarhan A. M. Empirical Bayes Estimates in Exponential Reliability Model[J]. Applied Mathematics and Computation,2003,(135).

二级参考文献7

  • 1王炳兴.Weibull分布基于定数逐次截尾寿命数据的统计分析[J].科技通报,2004,20(6):488-490. 被引量:12
  • 2Lawless JF.寿命数据中的统计模型与方法[M].北京:中国统计出版社,1982
  • 3Uditha Balasooriya, Sutaip L C Saw. Veeresh Gadag. Progressively censored reliability sampling plans for weibull distribution[J]. American Statistical Association, 2000, 42(2): 160-167
  • 4Uditha Balasooriya, C-K Low. Competing cause of failure and reliability tests for weibull lifetimes under type Ⅰ progressive censoring[J]. IEEE Trans on Reliab, 2004, 53(1): 29-36
  • 5Lindely D V. Approximate bayesian method[J]. Trabajos de Estadistica, 1980, 31:223-237
  • 6Tierney L, Kadane J B. Accurate approximations for posterior moments and marginal densities[J]. J Amer Stat Assoc, 1986, 81:82-86
  • 7徐晓岭,王蓉华.Weibull分布逐步增加的Ⅱ型截尾试验的统计分析[J].强度与环境,2003,30(2):31-37. 被引量:9

共引文献19

同被引文献38

  • 1陈光曙.关于次序统计量的联合分布与应用[J].河北师范大学学报(自然科学版),2006,30(4):396-397. 被引量:5
  • 2韦莹莹,韦程东,薛婷婷.Q-对称熵损失函数下的Poisson分布参数倒数的估计[J].广西师范学院学报(自然科学版),2007,24(2):33-38. 被引量:10
  • 3Vodt V G. On the "Inverse Rayleigh'" Distributed Random Variable [J]. Rep. Statist. Appl. Res. Un. Japan. Sci. Engrs, 1972, 19(4).
  • 4Mukherjee S P, Maiti S S. A Percentile Estimator of the Inverse Ray- leigh Parameter[J]. IAPQR. Trans., 1997, 21(1).
  • 5Dey S. Bayesian Estimation of the Parameter and Reliability Function of an Inverse Rayleigh Distribution[J]. Malaysian Journal of Math. Sci., 2012, 6(1).
  • 6Feroze N, Aslam M. On Posterior Analysis of Inverse Rayleigh Distri- bution under Singly and Doubly Type II Censored Data[J]. Inter. Jour- nal of Prob. and Statis., 2012, 1(5).
  • 7熊常伟,张德然,张怡.熵损失函数下几何分布可靠度的Bayes估计[J].数理统计与管理,2008,27(1):82-86. 被引量:34
  • 8Robbins H.An empirical Bayes approach to statistics.Proc.Third Berkeley Symp[C]//Math Statist Prob Berkeley,California Univ Press,1955,1:157-163.
  • 9Chen X R.Asymptotically optimal empirical Bayes estimation for parameter of one-dimension discrete exponential families[J].Chin Ann Math,1983,4B(1):41-55.
  • 10赵林成.一类离散分布参数的经验Bayes估计的收敛速度[J].数学研究与评论,1981,1:59-69.

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部