期刊文献+

关于Getz-Jacobson方法的若干讨论

Some Remarks on the Getz-Jacobson Method
下载PDF
导出
摘要 考虑一类右端函数为多项式情形的常微分方程组初值问题的奇异性.先指出Getz-Jacobson所提出的代数方法的某些不足,然后提出一个新的方法,使得更加方便地讨论此类问题解的爆破性质.最后应用这种方法成功地解决了来自化学反应的一个实例. The singularity of the initial value problem for a class of ordinary differential e- quations with polynomial right hand side is studied. After some localizations of the Getz-Ja- cobson method were pointed out,a new method is put forward to study the blow-up phenom- enon of the mentioned equation expediently. An example from the chemical reaction is solved successfully by this method.
出处 《应用数学》 CSCD 北大核心 2013年第1期125-128,共4页 Mathematica Applicata
基金 衡阳师范学院科学基金青年项目(11A31)
关键词 解的爆破 Getz-Jacobson方法 伴随系统 Kovalevskaya指数 ψ-级数 Blow-up Getz-Jaeobson method~ Companion system Kovalevskaya expo-nents ψseries
  • 相关文献

参考文献6

  • 1Kowalczyk R. Preventing blow-up in a chemotaxis modelj]]. lMAA . 2005.305 (2) : 566-588.
  • 2Beklernisheva L A. Classification of polynomial systems with respect to birational transformations[J]' Differentsiafnye Uravneniya .1978 .14(5) : 807-816.
  • 3Constantin A. Global existence of solutions for perturbed differential equations[J]. Ann. Math. Pure Appl. .1995.168(1) :237-299.
  • 4Getz W Mv.lacobson D H. Sufficiency conditions for finite escape times in systems of quadratic differential equations[J]. IMAJournal of Applied Mathematics. 1977 .19: 377-383.
  • 5Brenig L.Goriely A. Universal canonical forms for time-continuous dynamical systemsj l]. Phys, Rev. A. 1989.40(7) :4119-4121.
  • 6Goriely A. A brief history of Kovalevskaya exponents and modern developments[EB/OL]. http: / / www. turpion. org/php/full/infoFT. phtmlJournaUd= rd&paper_id= 120.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部