期刊文献+

基于区间型符号数据的群组推荐算法研究 被引量:7

Group recommendation algorithm based on symbolic data analysis
下载PDF
导出
摘要 传统群组推荐算法基于点数据描述群组用户模型,存在着信息缺失、很难统筹考虑所有个体用户的需求等问题。针对该问题,对个体评分数据按照符号数据分析的思想进行"打包",将群组成员的评分信息汇总为区间型符号数据。在Hausdorff距离基础上,采用区间内部点数据的描述统计量,提出了一种全新的区间数距离度量方法,并利用这种距离对区间型符号数据描述的群组实施K-均值聚类,由此确定相似群组,最后通过最近邻的评分预测目标群组的评分。将这种全新的群组推荐算法与传统方法进行推荐精度与效率的对比实验,结果表明,在各种实验条件下,基于区间型符号数据的群组推荐算法均优于传统点数据的群组推荐算法。 The group user profile in traditional group recommendation is described by single-valued data.This results in the loss of data information and being difficult to meet the demands of all the memebers of the group.Aimed at this problem,this paper took the method of symbolic data analysis aggregating individual ratings of the group into interval symbolic data into account.It proposed a novel distance considering the descriptive statistics of individuals within the intervals.Based on the K-means clustering on the interval data of group ratings,it obtained the similar groups.Then it predicted the ratings of the target group by using the neighbors' ratings.It conducted a simulation study to evaluate the new method.The result shows that the new method based on interval symbolic data analysis is more accurate and efficient than the traditional item-based collaborative filtering algorithms for group recommendation.
出处 《计算机应用研究》 CSCD 北大核心 2013年第1期67-71,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(70701026 71271147)
关键词 群组推荐 符号数据分析 聚类分析 group recommendation symbolic data analysis(SDA) cluster analysis
  • 相关文献

参考文献15

  • 1李岱峰,覃正.一种基于资源多属性分类的群组推荐模型[J].统计与决策,2010,26(8):153-155. 被引量:8
  • 2YU Zhi-wen, ZHOU Xing-she, HAO Yan'bin,et al. TV program re- commendation for multiple viewers based on user profile merging[ J ]. User Modeling and User-Adapted Interaction, 2006,16 ( 1 ) : 63- 82.
  • 3CHEN Y L, CHENG Li-ehen, CHUANG C N. A group recommenda- tion system with consideration of interactions among group .members [ J ] : Expert Systems with Applications,2008,34 (3) :2082-2090.
  • 4McCARTHY K, SALAMO M, COYLE L. Group recommender sys- tems:a critiquing based approach[ C ]//Proc of the 1 l th International Conference On Intelligent User Interfaces. New York: ACM Press, 2006 : 267- 269.
  • 5GARCIA I, SEBASTIA L, ONAINDIA E. On the design of indivi- dual and group recommendir systems for tourism [ J ]. Export Sys- tems with Applicatiofls,2011,38(6) :7683-7692.
  • 6ROY S B, CHAWLA A, DAS G, et al. Space efficiency in group re- commendation [ J]. Intemational Joumal on Very Large Data Ba- ses2010,19(6) :877-900,.
  • 7QUIJANO-SANCHEZ L, RECIO,GARCI J, DIAZ-AGUDO B, e a/. Personality and social trust in group recommendations [ C ]//Proc of the 22nd IEEE International Conference on Tools with Xrtifieial Intel- Iigence. Washington DC :IEEE Computer Society,2010 : 121-126.
  • 8BOCK H H, DIDAY E. Analysis of symbolic data [ M]. Berlin: SDriner-Verlag. 2000.
  • 9胡艳,王惠文.一种海量数据的分析技术一符号数据分析及应用[J].北隶航空航天大学学报:社会科学版,2004,17(2):40-44.
  • 10QUEIROZ S R M, De CARVALHO F A T. Making collaborative group recommendations based on modal symbolic data [ C ]//Lecture Notes in Computer Science ,vol 3171. 2004 : 121-153.

二级参考文献19

  • 1asthoff, J. Modeling a Group of Television Viewers[C].In Proceedings of the Workshop Future TV in Intelligent Tutoring Systems Conference, 2002.
  • 2Jameson, A. More than the Sum of Its Members:Challenges for Group Recommender Systems[C].In Proceedings of the Internaional Working Conference on Advanced Visual Interfaces,2004.
  • 3Chen, Y L. A Group Recommendation System with Consideration of Interactions among Group Members[J].Expert Systems with Applications,2008,34(3).
  • 4Ting, P L, Y F Y, et al. A Semantic-expansion Approach to Personalized Knowledge Recommendation[J].Decision Support System, 2008.
  • 5Balabanovic, M., Shoham, Y. Fab:Content-based, Collaborative Recommendation[J].Communications of the ACM,1997,40(3).
  • 6Bock H H, Diday E. Analysis of Symbolic Data[M]. Berlin, New York: Springer-Verlag, 2000.
  • 7Moore R E. Interval Analysis[M]. New Jersey, Englewood Cliffs: Prentice-Hall, 1966.
  • 8Despotis D K, Derpanis D. A rain-max goal programming approach to priority derivation in AHP with interval judgements[J], International Journal of Information Technology & Decision Making, 2008, 7(1): 175-182.
  • 9Billard L, Diday E. From the statistics of data to the statistics of knowledge: Symbolic data analysis[J]. Journal of the American Statistical Association, 2003, 98(462): 470-487.
  • 10Diday E, Noirhomme-Fraiture M. Symbolic Data Analysis and the SODAS Software[M]. West Sussex, Chichester: John Viley & Sons Ltd, 2008.

共引文献21

同被引文献62

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部