期刊文献+

限制解空间的PSO云存储任务调度算法 被引量:13

Task scheduling algorithm in cloud storage system using PSO with limited solution domain
下载PDF
导出
摘要 研究云存储系统中的任务调度算法。分析总结了任务调度在云存储和云计算系统中的不同,指出现有云计算中的PSO调度算法应用在云存储中时会产生对云存储系统来说无意义的解,即会要求系统节点提供它所不具有的数据。为解决此问题,改进现有的基于PSO的调度算法,引入存在矩阵的概念,将其初始化解和解的更新均限制于存在矩阵中,保证生成的解是有意义解。实验结果显示本调度算法可以节省约77%的迭代次数、缩短约4倍的执行时间,并保证产生对云存储系统有效的解。 This paper studied the task scheduling of the cloud storage system.Firstly,it analyzed the differences between the cloud storage and the cloud computing,and pointed out the existing PSO based task scheduling algorithm of cloud computing could not ensure the solution was meaningful to cloud storage,namely some solve may ask nodes offer data that they didn't have.In order to address these problems,the existing PSO based scheduling algorithm was improved by limiting the initialization solution and the solution search space in the exist solution space which could ensure solves were meaningful.The simulation results show that the algorithm can save 77% iteration times and also save about 4 times execution time and offer meaningful solutions for cloud storage system.
出处 《计算机应用研究》 CSCD 北大核心 2013年第1期127-129,154,共4页 Application Research of Computers
基金 四川省科技支撑计划项目(2011GZ0195) 四川省教育厅科研项目(青年)(10ZB093) 成都信息工程学院科研基金资助项目(KYTZ201121) 成都信息工程学院青年学科带头人资助项目(J201107)
关键词 云存储 粒子群算法 任务调度 存在矩阵 cloud storage PSO task scheduling existing matrix
  • 相关文献

参考文献8

  • 1HAYES B. Cloud computing [ J]. Communications of the ACM, 2008,51 (7) :9-11.
  • 2LIN G,DASMALCHI G,ZHU J. Cloud computing and IT as a ser- vice: opportunities and challenges[ C ]//Proc of the 6th IEEE Inter- national Conference on Web Services. Los Alamitos : IEEE Computer Society, 2008 : 1 - 5.
  • 3NAMJOSHI J, GUPTE A. Service oriented architecture for cloud based travel reservation software as a service [ C ]//Proc of the 2009IEEE International Conference on Cloud Computing. Washington DC : IEEE Computer Society,2009 ; 147-150.
  • 4ARMBRUST M, FOX A, GRIFFITH R, et al. Above the clouds: a Berkeley view of cloud computing [ EB/OL ]. 2009. http ://www. ee- cs. berkeley, edu/Pubs/TechRpts/2009/EECS-2009-28, html.
  • 5TAYAL S. Tasks scheduling optimization for the cloud computing sys- tems[ J]. International Journal of Advanced Engineering Sci- ences and Technologies ,2011,5 (2) : 111-115.
  • 6HANG Ruay-shiung, HEN Po-hung. Complete and fragmented repli- ca selection and retrieval in data grids[ J]. Future Generation Corn- puter Systems,2007,23(4) : 536-546.
  • 7RAHMAN R M, ALHAJJ R, BARKER K. Replica selection strate- gies in data grid[ J]. Journal of Parallel and Distributed Compu- ting,2008,68(12) :1561-1574.
  • 8CHAUHAN S S,JOSI-II R C. QoS guided heuristic algorithms for grid task scheduling [ J ]. International Joumal of Computer Applica- tions,2010,2(9) :24-31.

同被引文献79

  • 1郭岩,白硕,于满泉.Web使用信息挖掘综述[J].计算机科学,2005,32(1):1-7. 被引量:50
  • 2李宗勇,彭霞,王智学,刘影.基于蚁群算法的参数相关网格任务调度算法研究[J].系统仿真学报,2007,19(14):3196-3199. 被引量:9
  • 3熊忠阳,周亚峰.Web访问挖掘的预处理技术的研究[J].计算机技术与发展,2007,17(8):11-14. 被引量:19
  • 4CHAKRABARTI S. Data Mining for Hypertext. A Tutorial Survey [J]. ACM SIGKDD Explorations Newsletter, 2010, 1(2): 1-11.
  • 5CHONG S K, GABER M M, KRISHNASWAMY S, et al. Energy Conservation in Wireless Sensor Networks: A Rule- Based Approach [J]. Knowledge and Information Systems, 2011, 28(3): 579-614.
  • 6MIORANDI D, SICARI S, PELLEGRINI F D, et al. Internet of Things: Vision, Applications and Research Challenges [J]. Ad Hoc Networks, 2012, 10(7): 1497-1516.
  • 7Hayes B. Cloud computing[J].{H}Communications of the ACM,2008,(7):9-11.
  • 8张军;胡晓明.蚁群优化[M]{H}北京:清华大学出版社,2007.
  • 9Dorigo M,Caro G D. The ant colony optimization metaheuristic[A].London:McGraw Hill,1999.11-32.
  • 10MartinoV D,Mililotti M. Scheduling in A Grid Computing Environment Using Genetic Algorithms[A].{H}Florida,USA,2002.235-239.

引证文献13

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部