期刊文献+

基于K-means聚类的数字半色调算法 被引量:2

Digital halftoning algorithm based on K-means clustering
下载PDF
导出
摘要 数字半色调是在二值设备或多色二值设备上实现图像再现的一门技术,提出将K-means聚类法应用在数字半色调技术中。算法中应用人类视觉系统模型(HVS)和印刷模型最大限度减少原始灰度连续调图像和半色调图像之间的视觉误差;利用K-means聚类法将灰度图像划分成聚类分区,在每个聚类分区应用最小平方法(least-squares)最小化二值半色调图像和原始灰度级图像之间的平方误差,所构造的半色调算法与基于模型的最小平方法(LSMB)算法相比,随着聚类分区的增加,图像平滑且边缘清晰度增加,尤其是在图像细节部位。与LSMB算法比较,该算法的均方误差值有所降低,而权重信噪比和峰值信噪比提高了0.2~2 dB,模拟实验结果验证了算法的有效性。 Halftoning is a method for creating the illusion of continuous tone output with a binary device.This paper applied K-means clustering method to digital halftoning.The algorithm applied both a printer model and a model for the human visual system(HVS) to furthest minimize the perceived error between the continuous original image and the halftone image.Firstly,the method partitioned the gray image into two,three and four regions using K-means image segmentation method.Each clustering region used the least-squares model-based(LSMB) algorithm.Analysis and simulation results show that the proposed algorithm can produce better image smoothing and edge sharpness,especially the parts of image detail while increasing the number of clustering.Compared with the LSMB algorithm,it decreases the mean square error(MSEv) performance for the proposed algorithm,increases the weighted signal-to-noise ratio(WSNR) and the peak signal noise ratio(PSNR) performance for proposed algorithm by 0.2 to 2 dB.Experimental results indicate the effectiveness of the proposed algorithm.
出处 《计算机应用研究》 CSCD 北大核心 2013年第1期307-309,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60962007) 昆明理工大学人才培养基金资助项目(2011-02)
关键词 数字半色调 K-MEANS聚类 人类视觉模型 基于模型的最小平方法 digital halftoning K-means clustering human visual system least-squares model-based
  • 相关文献

参考文献8

  • 1BOUMAN C A. Digital hal ftoning [ EB/OL ]. ( 2012-01-09 ). https :// engneering, purdue, edu/ bouman/ece637/notes/pdf/Half toning. pdf.
  • 2ALLEBACH J P. Selected papers on digital halftoning[ M ]. Belling- ham : SPIE Milestone Series, 1999.
  • 3PAPPAS T N, ALLEBACH J P, NEUHOFF D L. Model-based digi- tal halftoning [ J ]. IEEE Signal Processing Magazine, 2003,20 (7) :14-27.
  • 4PAPPAS T N, NEUHOFF D L. Least-squares model-based hatftoning [ J ]. IEEE Trans on Image Processing, 1999,8 ( 8 ) : 1102-1116.
  • 5MANNOS J L, SAKRISON D J. The effects of a visual fidelity crite- rion on the encoding of images [ J ]. IEEE Trans on Information Theory,1974,20(4) :525-536.
  • 6PAPPAS T N, NEUHOFF D L. Printer models and error diffusion [ J ]. IEEE Trans on Image Processing, 1995,4 ( l ) :66-80.
  • 7BISHOP C M. Neural networks for pattern recognition [ M ]. Oxfi)rd: Oxford University Press, 1995.
  • 8WANG Zhou, BOVIK A C. A universal image quality index[ J] IEEE Signal Processing I_etters,2001,9(3 ) :81-84.

同被引文献25

  • 1倪巍伟,陆介平,孙志挥.基于向量内积不等式的分布式k均值聚类算法[J].计算机研究与发展,2005,42(9):1493-1497. 被引量:15
  • 2Boukerche A,Machado R B,Juca R L.An Agent Based and Biological Inspired Real-time Intrusion Detection and Security Model for Computer Network Opera-tions[J].Computer Communications,2007,30(13):2649-2660.
  • 3Dal D,Abraham S,Abraham A,et al.Evolutionary Induced Secondary Immunity:An Artificial Immune Systems Based Intrusion Detection Systems[C]//Proceedings of the 7th International Conference on Computer Information Systems and Industrial Management Applications.Ostrava,Czech Republic:[s.n.],2008:65-70.
  • 4Forrest S,Perelson S,Allen L.Self-nonself Discrimination in a Computer[C]//Proceedings of IEEE Society Symposium on Research in Security and Privacy and Privacy.Washington D.C.,USA:IEEE Press,1994:202-212.
  • 5Wang X.Research of Immune Intrusion Detection Algorithm Based on Semi-supervised Clustering[C]//Proceedings of the 3rd International Conference on Artificial Intelligence and Computational Intelligence.Berlin,Germany:Springer,2011:69-74.
  • 6Mostardinha P,Faria B F,Zúquete A,et al.A Negative Selection Approach to intrusion Detection[C]//Proceedings of the 11th International Conference on Artificial Immune Systems.Berlin,Germany:Springer,2012:178-190.
  • 7Wang Huadong,Zhong Jiang,Li Ang.Network Intrusion Detection Based on Artificial Immune Clustering[J].Journal of Information and Computational Science,2013,10(10):3003-3012.
  • 8Mahapatra P K,Kaur M,Sethi S,et al.Improved Thresholding Based on Negative Selection Algori-thm[J].Evolutionary Intelligence,2014,6(3):157-170.
  • 9Xi Liang,Zhang Fengbin,Wang Dawei.Optimization of Real-valued Self Set for Anomaly Detection Using Gaussian Distribution[C]//Proceedings of the 1ft International Conference on Artificial Intelligence and Computational Intelligence.Berlin,Germany:Springer,2009:112-120.
  • 10Wang Dawei,Xue Yibo,Yingfei D.Anomaly Detection Using Neighborhood Negative Selection[J].Intelligent Automation&Soft Computing,2011,17(5):595-605.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部