摘要
提高短期风电功率的预测精度对保证电力系统安全、稳定地运行具有重大意义。针对风速信号的强奇异性,采用脊波神经网络建立短期风电功率的预测模型;同时利用混沌DNA遗传算法确定脊波神经网络的隐层结构,采用粒子群算法优化网络的连接权值及方向向量。对新疆某风电场的输出功率进行了预测实验,并比较了优化前后脊波网络模型的预测性能。研究结果表明采用粒子群与混沌DNA遗传算法组合优化后的脊波神经网络均方根误差降至12.3%,预测精度得到显著提高。
Increasing the prediction accuracy of short-term wind power plays a key role in improving the security and stability of electric grid system. Aiming at the characteristics of wind speed signal, this paper uses the Ridgelet Neural Network for building the short-term wind power forecasting model. At the same time we use the chaos DNA genetic to identify the hidden layer of Ridgelet Neural Network, and use the Particle Swarm Optimization algorithm to adjust the weight value and direction vector. Based on the measured historical data of wind farm in Xinjiang, we did a experiment on wind power forecasting and compared the performance of the optimized model with that of the original one. Experimental results indicate that the RMSE (root mean squared error) of Ridgelet Neural Network can reduce to 12.3% by using the combination of chaos DNA genetic and particle swarm optimization algorithm,and the prediction accuracy is improved significantly.
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2013年第2期144-149,共6页
Power System Protection and Control
关键词
风电功率
预测
混沌DNA遗传算法
粒子群
脊波神经网络
wind power
prediction
chaos DNA genetic algorithm
particle swarm optimization
ridgelet neural network