期刊文献+

基于向量角分线的离散刀轨环子域分割算法

Segmenting Sub-Regions of Discrete Tool Path Track Based on Vector Angular Bisector
下载PDF
导出
摘要 为提高环切加工刀轨质量及生成效率,提出一种基于向量角分线的二维截面轮廓子区域的分割算法.结合Voronoi图的全局分解思想,通过改进中轴线中对多边形凹顶点的不均等处理的拓扑结构,提出有效向量角分线的概念;通过判断向量角分线交点的属性来合并角分线,同时生成子域结点关系树,最终把离散刀轨环分割成隶属于每个边界元素的子区域,并在子区域基础上生成无自交的等距线.实验结果表明,该算法运行高效,可提高刀位轨迹生成的效率和质量,并改善产品的加工性能. In order to improve quality and generating efficiency of contour-parallel offset tool-path tracks,a segmentation algorithm about sub-regions of discrete tool path tracks based on vector angular bisector is proposed. According to the idea of global decomposition of Voronoi diagram,the topology of medial axis which is unequal to concave points is improved. The concept of Valid Vector is presented and angular bisectors are combined by classifying properties of the intersection points of angular bisectors. The relational tree of sub-regions points is generated and the sub-regions of discrete tool path track are produced. The offset curves are generated at the same time. Experimental results show that the algorithm runs efficiently. The generating efficiency and quality of the tool-path are increased and the processing performance is improved.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第1期120-125,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家科技支撑计划(2009BAI81B02) 十二五国家科技支撑技术项目(2012BAI07B04) 江苏省卫生厅医学科研项目(H201034) 南航科研基本业务费(56XAA12010)
关键词 凸顶点 凹顶点 向量角分线 有效向量角分线 子域 convex point concave point vector angular bisector valid vector angular bisector sub-region
  • 相关文献

参考文献9

  • 1Lee C S, Phan T T, Kim D S. 2D curve offset algorithm for pockets with islands using a vertex offset [J]. InternationalJournal of Precision Engineering and Manufacturing, 2009, 10 (2) : 127-135.
  • 2Kim D S. Polygon offsetting using a Voronoi diagram and two stacks [J]. Computer-Aided Design, 1998, 30 (14): 1069- 1076.
  • 3Held M. Voronoi diagrams and offset curves of curvilinear polygons[J]. Computer Aided Design, 1998, 30 (4):287- 300.
  • 4Srinivasan V, Nackman L R. Voronoi diagram for multiply- connected polygonal domains. 1. Algorithm [J]. IBM Journal of Research and Development, 1987, 31(3):361-372.
  • 5Lee D T. Medial axis transformation of a planar shape [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(4); 363-369.
  • 6Degen W L F. Exploiting curvatures to compute the medial axis for domains with smooth boundary [J]. Computer Aided Geometric Design, 2004, 21(7): 641-660.
  • 7Cao L X, Liu J. Computation of medial axis and offset curves of curved boundaries in planar domain [J]. Computer-Aided Design, 2008, 40(4): 465-475.
  • 8周培德.计算几何-算法分析与设计[M].第2版.北京:清华大学出版社,2005:95-110.
  • 9Choi H I, Choi S W, Moon H P, et al. New algorithm for medial axis transform of plane domain [J]. Graphical Models and Image Processing,1997, 59(6) : 463-483.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部