期刊文献+

基于时空惊奇计算的视频异常检测方法 被引量:5

Anomaly detection method in video based on spatio-temporal surprise computation
下载PDF
导出
摘要 提出一种基于贝叶斯惊奇计算的视频异常检测方法.用块匹配运动估计方法提取运动特征(如运动幅度、方向),得到多尺度运动矢量直方图.使用空间维度与时间维度上惊奇计算相结合的度量方法,既可以检测"个体异常行为",也可以应用于"群体异常行为"检测.实验表明,该算法是鲁棒和实用的,且易于实现. We propose an anomaly detection method in video based on Bayesian surprise computation. We use the block-matching motion estimation method to extract low-level motion features (such as magnitude and direction of motion) and then calculate multi-scale histogram of motion vector. We use both spatial surprise and temporal surprise to detect not only "individual abnormal behavior " but also " group abnormal behavior". Experimental results show that our algorithm is robust and applicable and it can be easily implemented.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2013年第1期83-89,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(61071173)资助
关键词 视觉注意模型 视频分析 贝叶斯惊奇理论 异常检测 visual attention model video analysis Bayesian theory of surprise anomaly detection
  • 相关文献

参考文献16

  • 1Hu W M, Xiao X J, Fu Z Y,et al. A system for learning statistical motion patterns [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28 : 1450-1464.
  • 2Wang X G, Ma X X,Grimson W E L. Unsupervised activity perception in crowded andcomplicated scenes using hierarchical Bayesian models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 : 539- 555.
  • 3Ali S, Shah M. Floor fields for tracking in high density crowd scenes [ C ]// Computer Vision-Eccv 2008. PtIi, Proceedings, 2008,5303 : 1-14.
  • 4Jiang F, Yuan J S, Tsaftaris Sotirios A, et al. Anomalous video event detection using spatiotemporal context [ J ]. ComputerVision and Image Understanding, 2011,115:323- 333.
  • 5Cong Y, Yuan J S, Liu J. Sparse reconstruction cost for abnormal event detection [ C ] // Computer Vision and Pattern Recognition ( CVPR), 2011 IEEE Conference on. 2011: 3449-3456.
  • 6Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model [ C ] //CVPR : 2009 Ieee Conference on Computer Vision and Pattern Recognition. 2009 Vols, 1-4:935-942.
  • 7Wu S D, Moore B E,Shah M. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes [ C ]//IEEE Conference on Computer Vision and Pattern Recognition (Cvpr). 2010:2054-2060.
  • 8Mahadevan V, Li W X,Bhalodia V, et al. Anomaly detection in crowded scenes [ C ] // IEEE Conference on Computer Vision and Pattern Recognition (Cvpr). 2010:1975-1981.
  • 9Adam A, Rivlin E, Shimshoni I, et al. Robust real-time unusual event detection using multiple fixed-location monitors [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30:555-560.
  • 10Grundmann M, Meier F, Essa I. 3D shape context and distance transform for action recognition [ C ] // 19th International Conference on Pattern Recognition. 2008 : 1-4.

同被引文献6

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部