摘要
提出一种基于贝叶斯惊奇计算的视频异常检测方法.用块匹配运动估计方法提取运动特征(如运动幅度、方向),得到多尺度运动矢量直方图.使用空间维度与时间维度上惊奇计算相结合的度量方法,既可以检测"个体异常行为",也可以应用于"群体异常行为"检测.实验表明,该算法是鲁棒和实用的,且易于实现.
We propose an anomaly detection method in video based on Bayesian surprise computation. We use the block-matching motion estimation method to extract low-level motion features (such as magnitude and direction of motion) and then calculate multi-scale histogram of motion vector. We use both spatial surprise and temporal surprise to detect not only "individual abnormal behavior " but also " group abnormal behavior". Experimental results show that our algorithm is robust and applicable and it can be easily implemented.
出处
《中国科学院研究生院学报》
CAS
CSCD
北大核心
2013年第1期83-89,共7页
Journal of the Graduate School of the Chinese Academy of Sciences
基金
国家自然科学基金(61071173)资助
关键词
视觉注意模型
视频分析
贝叶斯惊奇理论
异常检测
visual attention model
video analysis
Bayesian theory of surprise
anomaly detection