期刊文献+

基于Hough直线检测的深度图像配准方法 被引量:5

Range image registration based on Hough transform
下载PDF
导出
摘要 针对传统的图像配准方法中寻找图像之间点对应关系这一难点问题,提出一种基于Hough直线检测的深度图像配准方法.利用Hough变换检测深度图像上的直线,确定不同视点图像上直线之间的对应关系.根据对应直线三维空间上的方向向量确定两幅图像之间的刚体变换参数.最后用模拟深度图像验证方法的有效性并给出三维重建结果. Image registration is important in the 3D-reconstruction from multi-view sampling points. A method based on Hough transform is proposed for the registration from multi-view image. First, all the fines are detected using Hough transform and the correspondent lines are fixed automatically. Then transformation matrix is calculated by using these correspondent lines. Finally the experimental results are given.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2013年第1期112-116,共5页 Journal of the Graduate School of the Chinese Academy of Sciences
关键词 图像配准 HOUGH变换 深度图像 image registration Hough transform range image
  • 相关文献

参考文献9

  • 1Besl P J, McKay N D. A method for registration of 3D shapes [J]. IEEE Trans PAMI, 1992,14(2): 239-256.
  • 2张爱武,别、卫东,葛成辉,李风亭.室外大型场景多机位三维数据全局快速配准[J].高技术通讯,2004,14(6):6-10. 被引量:11
  • 3Stamos I, Alien P K. 3D model construction using range and image data [ C ] // IEEE Proceedings on CVPR. IEEE Computer Society, 2000:531-536.
  • 4Qu Z G, Gao Y H, Wang P, et al. Straight line based image registration in Hough parameter space [ C ] // International Workshop on Multi-Platform/Multi-Sensor Remote Sensing and Mapping ( M2RSM). Xiamen, China, 2011 : 1-7.
  • 5Lin H, Du P J, Zhao W C, et al. Image registration based on corner detection and affine transformation [ C ]//CISP 2010. Yantai, China, 2010: 2184-2188.
  • 6Kang J, Xiao C B, Deng M,et al. Image registration based on Harris comer and mutual information [ C ] //EMEIT 2011. Harbin, China: HUST IEEE press, 2011 : 3434-3437.
  • 7冈萨雷斯.数字图像处理(MATLAB版)[M].北京:电子工业出版社.2005.
  • 8魏海涛.计算机图形学[M].北京:电子工业出版社,2007.
  • 9Berthold K P Horn. Closed-form solution of absolute orientation using unit quaternions [ J ]. Journal of the Optical Society of America A, 1987, 4: 629-642.

二级参考文献12

  • 1[1]Besl P J, Mckay N D. IEEE Trans PAMI, 1992, 14(2): 239
  • 2[2]Chen Y, Medioni G. Image and Vision Computing, 1992, 10(3): 145
  • 3[3]Pulli K. Multiview registration for large data sets. In: Second Int Conf on 3D Digital Imaging and Modeling, 1999. 160
  • 4[4]Stewart C V. Covariance-based registration. Technical Report RPI-CS-TR 02-8,Department of Computer Science, Rensselaer Polytechnic Institute, June 2002
  • 5[5]Johnson A. Spin-images: a represesmation for 3-D surface matching: [dissertation]. Pittsburgh, PA: Robotics Institue, Carnegie Mellon University, 1997
  • 6[6]Stamos I, Leordeanu M. Automated feature-based range registration of urban scenes of large scale. In: Inter Conf Computer Vision and Pattern Recognition, Madison, WI: June 2003
  • 7[7]Lu F, Milios E. Tonomous Robots, 1997, 4(4): 333
  • 8[8]Bergevin R, Soucy M, Gagnon H, et al. IEEE Trans PAMI, 1996, 18(5): 540
  • 9[9]Nishino K, Ikeuchi K. Robust simultaneous registration of multiple range images. In: The 5th Asian Conference on Computer Vision (ACCV2002), 2002.454
  • 10[10]Benjernaa R, Schmit F. Fast global registration of sampled surfaces using a multi-z-buffer technique. In: Proceedings of IEEE International Conference on Recent Adances in 3D Dgital Imaging and Modeling, Ottawa,Canada: 1997.113

共引文献85

同被引文献20

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部