期刊文献+

一种用于车牌识别的图像超分辨率算法 被引量:5

Image super-resolution approach for license-plate recognition
下载PDF
导出
摘要 仿效人类的视觉认知过程,提出面向目标的图像超分辨率算法.只需从一幅车牌图像就可以恢复目标的细节信息.该算法使用先检测、后重建的思路,通过联合稀疏编码建立目标高低分辨率图像片之间的关系,以目标可以稀疏表示为先验,检测到目标区域后,通过压缩感知重建图像.实验表明,重建图像的峰值信噪比(PSNR)较传统方法约有2 dB的改善.此外,还验证了超分辨率重建改善了车牌识别结果,可以消除20%的错误识别字符. An object-oriented image super-resolution approach is proposed, which imitates visual cognition of human beings. The reconstruction procedure needs only a single image of the license plate. In the training stage, the corresponding relationship between high and low image patches is built by combined sparse coding. After an object is detected, the low resolution object image is reconstructed by compressing sensing under assumption of sparse representation. Experimental results on license plate images show that the PSNR is improved by nearly 2 dB compared to conventional non-object oriented strategy, and 20% of misrecognized characters are correctly recognized after reconstruction.
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2013年第1期137-143,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 中国科学院百人计划(99T300CEA2) 国家科技重大专项(2010ZX03006-001-02) 国家高技术研究发展计划(2009AA12Z143)资助
关键词 面向目标 超分辨率 压缩感知 稀疏编码 邻接特征 object oriented super-resolution compressed sensing sparse coding neighborfeature
  • 相关文献

参考文献17

  • 1Park S C, Park M K, Kang M G. Super-resolution image reconstruction: a technical overview E J 1- IEEE Signal Processing Magazine, 2003, 20 (3) :21-36.
  • 2姚振杰,易卫东.多传感器高精度图像融合算法[J].计算机科学,2009,36(10A):265-268.
  • 3Tsai R Y, Huang T S. Multiple frame image restoration and registration[ C ] //Advances in Computer Vision and Image Processing. Greenwich: JAI Press, 1984: 317-339.
  • 4赵书斌,彭思龙.基于小波域HMT模型的图像超分辨率重构[J].计算机辅助设计与图形学学报,2003,15(11):1347-1352. 被引量:21
  • 5Stark H, Oskoui P. High-resolution image recovery from imageplane arrays, using convex projections [ J]. Journal of Optical Society of America A, 1989, 6 ( 11 ) : 1715-1726.
  • 6Freeman W T, Pasztor E C. Learning low-level vision [ C]// Proceedings of Seventh International Conference on Computer Vision. Corfu: IEEE, 1999: 1182-1189.
  • 7Yang J C, Wright J, Huang T S, et al. Image superresolution via sparse representation[ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2861-2873.
  • 8Kim K I, Kwon Y. Single-image super-resolution using sparse regression and natural image prior[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32 (6):1127-1133.
  • 9Glasner D, Bagon S, Irani M. Super-resolution from a single image [ C ] // 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 349-356.
  • 10Anagnostopoulos C, Anagnostopoulos I, Psoroulas I, et al. License plate recognition from still images and video sequences: a survey [ J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9 (3) : 377-391.

二级参考文献17

  • 1Battiato S, Gallo G, Stanco F. A locally-adaptive zooming algorithm for digital images[J]. Image Vision and Computing, 2002, 20(11): 805~812
  • 2Baker S, Kanade T. Limits on super-resolution, how to break them[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1167~1183
  • 3Baker S, Kanade T. Hallucinating faces[A]. In: Proceedings of the 4th IEEE International Conference on Automatic Face, Gesture Recognition, Grenoble, 2000. 83~89
  • 4Daubechies I. Ten Lectures on Wavelets[M]. Montpelier: Capital City Press, 1992
  • 5Mallat S. A Wavelet Tour of Signal Processing[M]. San Diego: Academic Press, 1998
  • 6Crouse Matthew S, Nowak Robert D, Baraniuk Richard G. Wavelet-based statistical signal processing using hidden Markov models[J]. IEEE Transactions on Signal Processing, 1998, 46(4): 886~902
  • 7Romberg Justin K, Choi Hyeokho, Baraniuk Richard G. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models[J]. IEEE Transactions on Image Processing, 2001, 10(7): 1056~1068
  • 8Coifman R R, Donoho D L. Translation-invariant de-noising[R]. San Francisco: Stanford University, 1995
  • 9Schultz Richard R, Stevenson Robert L. A Bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(5): 233~242
  • 10Schultz R R, Stevenson R L. Extraction of high-resolution frames from video sequences[J]. IEEE Transactions on Image Processing, 1996, 5(6): 996~1011

共引文献20

同被引文献45

  • 1汪雪林,文伟,彭思龙.基于小波域局部高斯模型的图像超分辨率[J].中国图象图形学报(A辑),2004,9(8):941-946. 被引量:5
  • 2韩玉兵,束锋,孙锦涛,吴乐南.基于MG-GMRES算法的图像超分辨率重建[J].计算机学报,2007,30(6):1028-1034. 被引量:5
  • 3V Loumos, E Kayafas.A License Plate Recognition Algo- rithm for Intelligent Transp-ortation System Applications [J] . IEEE Intelli-gent Transportation Systems Society, 2006, 7 (1 l) : 1524-9050.
  • 4李云红,屈海涛.数字图像处理[M].北京:北京大学出版社,2012.
  • 5张弘.数字图像处理及分析[M].北京:机械工业出版社.2007.
  • 6Kim K I, Kwon Y.Single-image super-resolution using sparse regression and natural image prior [J] . IEEE Transactions on Pattern Analysis and Machine Intelli- gence. 2010, 32 (6): 1102-1209.
  • 7R.Y.Tsai,T.S.Huang. Multipleframe image restoration and registration[J].Computer Vision and Image Processing,1984.317-339.
  • 8Irani M,Peleg S. Motion analysis for image enhancement.resolution,conclusion,and transparency[J].{H}JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION,1993,(04):324-336.
  • 9Irani M,Peleg S. Improving resolution by image registration[J].GraphicalModels and Image Proc,1991,(01):231-239.
  • 10Stark H,Oskoui P. High-resolution image recovery from image-plane arrays,Using convex projection[J].{H}Journal of the Optical Society of America,1989,(11):1715-1726.

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部