期刊文献+

圆柱度仪单截面自动对中调节方法的研究 被引量:1

Research on Self-centering Control Method of Cylindricity Measuring Instrument
下载PDF
导出
摘要 依据倾斜圆柱横截面为椭圆,在分析圆柱度仪工作台偏心和倾角调整原理的基础上,提出了一种新的单截面椭圆测量自动对中控制算法;根据调整运动的不同,提出了两种对中调节方法;结合谱分析技术实现了椭圆特征参数的便捷提取;采用LabView编制了相应的算法软件。仿真结果表明,单截面自动对中调节方法耗时短、精度高,显著提高了圆柱度仪对中的效率。 This paper put forwards a new self-centering control algorithm by analyzing the principles of worktable adjustment based on that the section of angled cylinder is ellipse and put forwards two centering adjustment methods based on the differences of adjusting movements.Then the characteristic parameters of the elliptic by analyzing the spectrum were extracted.The algorithm software was finished by Labview.The simulation results show that the algorithm has features as short time,high precision and more efficiency.
机构地区 郑州大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第1期11-14,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50975262)
关键词 自动对中 LABVIEW 圆柱度仪 频谱分析 self-centering control Labview cylindricity measuring instrument spectrum analysis
  • 相关文献

参考文献7

二级参考文献14

  • 1陈立杰,张镭,张玉.直角坐标采样时的圆柱度误差数学模型[J].东北大学学报(自然科学版),2005,26(7):677-679. 被引量:11
  • 2刘国光.基于Matlab评定圆柱度误差[J].工程设计学报,2005,12(4):236-239. 被引量:14
  • 3崔长彩,黄富贵,张认成,李兵.粒子群优化算法及其在圆柱度误差评定中的应用[J].光学精密工程,2006,14(2):256-260. 被引量:20
  • 4Lai H Y,Jywe W Y,Chen C K,et al. Precision Modeling of Form Error for Cylindricity Evaluation on Using Genetic Algorithms [J]. Precision Engineering,2000,24(4) :310-319.
  • 5Lao Y Z, Leong H W, Preparata Singh F P, et al. Accurate Cylindricity Evaluation with Axis--estimation Pre-processing[J]. Precision Engineering, 2003,27 (4) : 429-437.
  • 6Cheraghi H ,Jiang G, Ahmad J S. Evaluating the Geometric Characteristics of Cylindrical Features[J]. Precision Engineering,2003,27 (2) :195-204.
  • 7Gou J B,Chu Y X,Li Z X. A Geometric Theory of Form Profile and Orientation Tolerances[J]. Precision Engineering, 1999,23 (2) : 79-93.
  • 8Carr K, Ferreira P. Verification of Form Tolerances Part Ⅱ:Cylindricity and Straightness of A Median Line[J]. Precision Engineering, 1995, 17 (2): 144- 146.
  • 9Gander W ,Golub G H, Strebel R, et al. Least-squares fitting of circles and ellipses [ J ]. BIT Numerical Mathematics, 1994,34 (4) :558 -578
  • 10Rosin P L. Ellipse fitting by accumulating five-point fits [ J ]. Pattern Recognition Letters, 1993,14 ( 8 ) :661 - 669

共引文献212

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部