期刊文献+

基于Delaunay三角剖分的多目标进化算法解集分布度评价指标 被引量:3

A Delaunay Triangulation Based Diversity Metric for Solution Set of Multi-Objective Evolutionary Algorithms
原文传递
导出
摘要 系统分析目前多目标进化算法(MOEAs)分布度评价指标的特点和不足,提出一种基于Delaunay三角剖分的分布度评价指标.该指标将基于邻域和基于距离的评价思想相结合,利用Delaunay三角网最近邻与邻接性的特点实现自主邻域划分.采用空间映射的方法,有效减少MOEAs解集非支配关系对种群分布度评价的影响.测试结果表明该指标能准确反映MOEAs解集的分布性. A Delaunay triangulation based metric (DTDM) is proposed for assessing the diversity metric in multi-objective evolutionary algorithms (MOEAs) by analyzing the characteristics and shortcomings of the current diversity metrics. The proposed metric is introduced by combining the neighborhood-based ideology and distance-based ideology. The metric independently searches the neighborhood by using the properties of the nearest and adjacent neighborhood of Delaunay triangulation net. The non-dominated relationship is eliminated according to a space mapping technique. The experimental results show that the proposed metric accurately evaluates the diversity of the solution set obtained by MOEAs.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第6期885-893,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.60773047 61070088) 湖南省自然科学基金项目(No.09JJ6089 10JJ3072) 湖南省教育厅项目(No.10C1261)资助
关键词 多目标优化 多目标进化算法(MOEAs) 性能评价 分布度指标 DELAUNAY三角剖分 Multi-Objective Optimization, Multi-Objective Evolutionary Algorithms (MOEAs),Performance Assessment, Diversity Metric, Delaunay Triangulation
  • 相关文献

参考文献22

  • 1Deb K. Multi-Objective Optimization Using Evolutionary Algo- rithms. Chichester, UK: John Wiley & Sons, 2001.
  • 2Okabe T, Jin Yaochu, Sendhoff B. A Critical Survey of Performance Indices for Multi-Objective Optimization//Proc of the Congress on Evolutionary Computation. Offenbach, Germany, 2003 : 878-885.
  • 3公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):271-289. 被引量:399
  • 4van Veldhuizen D A, Lamont G B. Muhiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art. Evolutionary Computa- tion, 2000, 8(2) : 125-147.
  • 5Schott J R. Fault Tolerant Design Using Single and Muhicriteria Genetic Algorithm Optimization. Master Dissertation. Boston, USA : Massachusetts Institute of Technology, 1995.
  • 6Coello C C A, Lamont G B, van Veldhuizen D A. Evolutionary Algorithms for Solving Multi-Objective Problems. 2nd Edition. New York, USA: Springer, 2007.
  • 7Zitzler E, Thiele L. Muhiobjeetive Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Trans on Evolutionary Computation, 1999, 3 (4) : 257-271.
  • 8Zitzler E, Knowles J, Thiele L. Quality Assessment of Pareto Set Approximations//Branke J, Deb K, Miettinen K, et al, eds. Mul- tiobjective Optimization: Interactive and Evolutionary Approaches. New York, USA: Springer, 2008 : 373-404.
  • 9Deb K, Pratap A, Agarwal S, et al. A Fast and Elitist Multiobjec- tive Genetic Algorithm: NSGA- H. IEEE Trans on Evolutionary Computation, 2002, 6 (8) : 182-197.
  • 10Farhang-Mehr A, Azarm S. An Information-Theoretic Entropy Met- ric for Assessing Multi-Objective Optimization Solution Set Quality. Journal of Mechanical Design, 2003, 125(4) : 655-663.

二级参考文献27

共引文献427

同被引文献49

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部