期刊文献+

基于传输互表达的基因表达数据聚类分析

Clustering Analysis of Gene Expression Data Based on Transitive Co-Expression
原文传递
导出
摘要 针对基因表达数据基于表达相似的聚类分析并不能完全揭示基因之间的功能相似问题,结合基因的传输互表达关系,提出基于传输互表达的聚类分析方法.首先用基因的表达相关来构建基因相关图,然后通过最短路分析来获得基因之间传输互表达关系并作为基因的相似测度,再用k-均值聚类算法进行聚类分析.对Yeast基因表达数据进行聚类实验,并与基于表达相似的聚类结果对比.实验结果表明,基于传输互表达的聚类方法能获得更好的聚类性能和较高的聚类正确率,验证基于传输互表达的基因聚类更能揭示基因相似的本质. Clustering analysis of gene expression data based on similar expression measures can not fully reveal the genetic function similarity between genes. Combined with gene transitive co-expression, a method for clustering analysis based on transitive co-expression is proposed to solve the problem. Firstly, the gene-related graph is built by using coefficient between gene expression profiles. Next, the transitive co-expression relationship between genes is obtained by the shortest path analysis. Then, clustering is performed by using k-means algorithm with transitive co-expression relationship as similarity measure. The experiments on Yeast gene expression data show that the transitive co-expression-based clustering method achieves better clustering performance compared with expression-based clustering method, and the clustering accuracy is significantly higher than that of the expression-based clustering method. The experimental results indicate that the proposed algorithm has better performance in revealing the nature of gene similarity compared with expression-based clustering method.
作者 王文俊
出处 《模式识别与人工智能》 EI CSCD 北大核心 2012年第6期894-899,共6页 Pattern Recognition and Artificial Intelligence
基金 中央高校基本科研业务费专项资金资助项目(No.K5051203013)
关键词 基因表达数据 聚类 表达相似 功能相似 传输互表达 Gene Expression Data, Clustering, Expression Similarity, Function Similarity, TransitiveCo-Expression
  • 相关文献

参考文献19

  • 1Karakach T K, Flight R M, Douglas S E, et aL An Introduction toDNA Microarrays for Gene Expression Analysis. Chemometrics and Intelligent Laboratory Systems, 2010, 104( 1 ) : 28-52.
  • 2Katagiri F, Glazebrook J. Overview of mRNA Expression Profiling Using DNA Microarrays. [EB/OL]. [2011-09-01]. http://www. current protocals, com/wileyCDA/CPUnit/refid-mb2204, html.
  • 3Nguyen D V, Arpat A B, Wang N, et al. DNA Microarray Experi- ments : Biological and Technological Aspects. Biometrics, 2002, 58 (4) : 701-717.
  • 4Verdncci J S, Melfi V F, Lin S, et al. Microarray Analysis of Gene Expression: Considerations in Data Mining and Statistical Treat- ment. Physiological Genomics, 2006, 25 (3) : 355-363.
  • 5Kerr G, Ruskin H J, Crane M, et al. Techniques for Clustering Gene Expression Data. Computers in Biology and Medicine, 2008, 38(3) : 283-293.
  • 6Jung K, Grade M, Gaedcke J, et al. A New Sensitivity-Preferred Strategy to Build Prediction Rules for Therapy Response of Cancer Patients Using Gene Expression Data. Computer Methods and Pro- grams in Biomedicine, 2010, 100(2) : 132-139.
  • 7Xu R, Damelin S, Nadler B, et al. Clustering of High-Dimensional Gene Expression Data with Feature Filtering Methods and Diffusion Maps. Artificial Intelligence in Medicine, 2010, 48(2/3) : 91-98.
  • 8An J, Chen Y P. Finding Rule Groups to Classify High Dimensional Gene Expression Datasets. Computational Biology and Chemistry, 2009, 33(1) : 108-113.
  • 9Lin K S, Chien C F. Cluster Analysis of Genome-Wide Expression Data for Feature Extraction. Expert Systems with Applications, 2009, 36(2) : 3327-3335.
  • 10Song J, Nicolae D L. A Sequential Clustering Algorithm with Applications to Gene Expression Data. Journal of the Korean Sta- tistical Society, 2009, 38(2) : 175-184.

二级参考文献33

  • 1李霞,张田文,郭政.一种基于递归分类树的集成特征基因选择方法[J].计算机学报,2004,27(5):675-682. 被引量:26
  • 2李颖新,阮晓钢.基于基因表达谱的肿瘤亚型识别与分类特征基因选取研究[J].电子学报,2005,33(4):651-655. 被引量:18
  • 3高新波 姬红兵.一种基于特征加权的模糊均值聚类算法[J].西安电子科技大学学报,2000,27:80-83.
  • 4[1]Ramaswamy S,Golub T R.DNA Microarrays in clinical oncology[J].Journal of Clinical Oncology,2002,20(7):1932-1941.
  • 5[2]Lander E S,Weinberg R A.GENOMICS:Journey to the center of biology[J].Science,2000,287(5459):1777-1782.
  • 6[3]Lander E S.Array of hope[J].Nature Genetics,1999,21(suppl l):3-4.
  • 7[4]Golub T R,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 8[5]Khan J,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature,2001,7(6):673-679.
  • 9[6]Zhan F,et al.Global gene expression profiling of multiple myeloma,monoclonal gammopathy of undetermined significance and normal bonemarrow plasma cells[J].Blood,2002,99(5):1745-1757.
  • 10[7]Yeang C H,et al.Molecular classification of multiple tumor types[J].Bioinfomatics,2001,17(Suppl 1):S316-S322.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部