期刊文献+

基于反馈学习粒子群算法的极值搜索控制 被引量:2

Extremum Seeking Control Based on Feedback Learning Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 将基于反馈学习的粒子群(Feedback Learning Particle Swarm Optimization,FLPSO)算法引入极值搜索控制中,并且应用经典跟踪参考信号的方法,进一步改善极值搜索控制的性能.仿真结果显示,算法使系统控制输出平稳,并且系统性能输出快速渐进收敛到最优值,改善了基于格拉姆矩阵设计的极值搜索控制算法中存在的输出震荡问题. This paper brought the feedback particle swarm optimization algorithm(FLPSO) into the extremum seeking control(ESC),applied the idea of tracking problem which was first introduced into ESC by Zhang,and improved the performance of ESC.According to the simulation,the output of the control becomes relatively stable and the output of the performance function converges to optimum rapidly.The algorithm improves the problem of output function oscillation existed in the algorithm combined with Gramm method.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第12期1962-1966,共5页 Journal of Shanghai Jiaotong University
基金 国家自然科学基金资助项目(60974100 61134007 60904039)
关键词 粒子群优化 极值搜索控制 性能输出震荡 particle swarm optimization(PSO) extremum seeking control performance output oscillation
  • 相关文献

参考文献11

  • 1Kennedy J,Eberhart R. Particle swarm optimization[C] // IEEE International Conference on Neural Net-works. Perth, Australia:IEEE, 1995 : 1942-1948.
  • 2Parsopoulovs K E,Vrahatis M N. Parameter selectionand adaptation in unified particle swarm optimization[J]. Mathematical and Computer Modelling, 2007, 46?1-2) : 198-213.
  • 3Mendes R, Kennedy J,Neves J. The fully informedparticle swarm: Simpler, maybe better [J]. IEEETransactions on Evolutionary Computation,2004,8(3) : 204-210.
  • 4Liang J , Qin A K,Suganthan P N, et al. Compre-hensive learning particle swarm optimizer for globaloptimization of multimodal functions [ J ]. IEEETransactions on Evolutionary Computation,2006,21(2): 281-295.
  • 5Zhan Z H , Zhang J,Li Y, et al. Adaptive particleswarm optimization, systems [J ]. IEEE Transactionson Man, and Cybernetics. Part B: Cybernetics, 2009,39(6) : 1362-1381.
  • 6Tang Y,Wang Z,Fang J. Feedback learning particleswarm optimization [ J ]. Applied Soft Computing,2011,11(8) : 4713-4725.
  • 7Zhang C L,Ordonez R. Robust and adaptive designof numerical optimization-based extremum seekingcontrol[J]. Automatica, 2009,45(3) : 634-646.
  • 8Jiang M, Luo Y P,Yang S Y. Stochastic conver-gence analysis and parameter selection of the standardparticle swarm optimization algorithm [J ]. Informa-tion Processing Letters, 2007,102(1) : 8-16.
  • 9Miroslav K, Wang H H. Stability of extremum see-king feedback for general nonlinear dynamic sy.stems[J]. Automatica, 2000,36(4) : 595-601.
  • 10Zhang C L, Ordonez R. Extremum seeking controlbased on numerical optimization and state regulation -Part II: Robust and adaptive control design [C]//2006 45th IEEE Conference on Decision and Control.San Diego, California: IEEE.2006 , 4460-4465.

同被引文献23

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部