期刊文献+

雷达对抗侦察数据关联规律挖掘算法研究 被引量:1

Related rules mining algorithm of radar countermeasures reconnaissance data
下载PDF
导出
摘要 目前,雷达对抗侦察数据的分析和总结主要依靠情报分析员的经验和知识,随着侦察数据与日剧增以及战时极大量数据的可能出现,人工分析侦察数据变得捉襟见肘。数据挖掘的渐渐兴起和挖掘算法的不断改进,使得这个问题的解决有了可能。根据雷达对抗侦察数据的特点和作战运用要求,运用数据挖掘方法,分析了雷达对抗侦察数据关联规律挖掘算法,并给出了基于权重的挖掘算法、强关联规律挖掘算法以及备用信号挖掘算法。 Now, the analysis and summing of the data that reconnoitered by radar countermeasure equip- ment mainly depend on the experience and knowledge of intelligence analyzers. With the increasing of the re-connaissance data and the possibility of the emergence of large number of data in wartime, the analysis of re-connaissance data becomes hard to handle. The popularity of data mining and the development of mining algo-rithms give the chance to solve the problem. According to the characteristic of radar countermeasure reconnais- sance data and the needs of operation, using data mining methods, the algorithms of radar countermeasure re-connaissance data related rules mining algorithm are analyzed, and the mining algorithm depends upon factor quality, the mining algorithm of strong related rules and the mining algorithm of backup signal are given.
机构地区 中国人民解放军
出处 《航天电子对抗》 2012年第6期52-54,共3页 Aerospace Electronic Warfare
关键词 雷达对抗侦察 关联规律 数据挖掘 算法 radar countermeasures reconnaissance related rules data mining algorithm
  • 相关文献

参考文献5

二级参考文献12

  • 1王宝树.基于关联度修正欧氏距离的说话人识别技术[J].西安电子科技大学学报,1994,21(1):14-19. 被引量:1
  • 2万建伟,宋小全,皇甫堪,周良柱.雷达信号综合分选方法研究[J].电子学报,1996,24(9):91-94. 被引量:10
  • 3邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1988.1-162.
  • 4KANTARDZICM models.Dataminingconcepts,methods and algorithms[M].北京:清华大学出版社,2002..
  • 5Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976
  • 6Mardia H K. New techniques for the deinterleaving of repetitive sequences [J]. IEEE proceedings, Pt F,1989,136(4) : 149 - 154.
  • 7Milojevic D J. Improved Algorithm for the Deinterleavingof Radar Pulses[J]. IEEE proceedings Pt F, 1992, 139.(1) :98-104.
  • 8Robert J Orsi, John B Moore, Robert E Mahony. Spectrum estimation of interleaved pulse trains[J]. IEEE transactions on signal processing, 1999,47(6) : 1646 - 1653.
  • 9Ken'Ichi Nishiguchi, Masaaki Kobayashi. Improved Algorithm for Estimating Pulse Repetition Intervals [J]. IEEE.transactions on aerospace and electrnic systems, 2000,36(2): 407-421.
  • 10蓝金辉,马宝华,蓝天,周兆英.D-S证据理论数据融合方法在目标识别中的应用[J].清华大学学报(自然科学版),2001,41(2):53-55. 被引量:81

共引文献7

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部