期刊文献+

凸线性组合支持向量机的初始对准方法

Initial alignment based on the convex linear combination of support vector machine
下载PDF
导出
摘要 针对捷联惯导初始对准中UKF滤波中噪声的统计特性与实际不符时,滤波精度严重降低甚至发散的问题,提出一种基于凸线性组合支持向量机的初始对准方法。将测试样本对分为四组,分别用三组训练第一层和一组训练第二层的支持向量机,第一层为几组支持向量机的并行计算,第二层是把第一层单个支持向量机以凸线性组合的形式进行信息融合,构成凸线性组合支持向量机,从而实现捷联惯导系统的初始对准。最后通过UKF滤波、SVM、CLC-SVM进行仿真对比,结果表明CLC-SVM较单一SVM性能提高,实时性比UKF滤波提高一个数量级,泛化能力增强。 The filtering precision would be severely decreased or even divergent when the noise statistical characteristics of UKF filter in SINS initial alignment does not conform to the actual one.To solve this problem,an initial alignment method based on support vector machine(SVM) is proposed.The test samples are split into four groups,in which three groups are trained for the SVMs in the first layer,and the last group is trained for the SVMs in the second layer.The parallel computing is trained for several groups of support vector machines in first layer,and the information of various single-SVMs in the first layer are trained to be fused by convex linear combination.In this way the initial alignment of SINS is realized.The results from the simulation contrast among UKF filter,SVM,CLC-SVM shows that the performance of CLC-SVM has improved compared with that of single SVM,and its real-time performance increases one order of magnitude compared with that of UKF filtering.Meanwhile,its generalization ability is enhanced.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2012年第6期635-639,共5页 Journal of Chinese Inertial Technology
基金 十二五预研项目(51309030601)
关键词 初始对准 凸线性组合 支持向量机 UKF 信息融合 initial alignment convex linear combination support vector machine unscented Kalman filter information fusion
  • 相关文献

参考文献10

  • 1杨亚非,谭久彬,邓正隆.惯导系统初始对准技术综述[J].中国惯性技术学报,2002,10(2):68-72. 被引量:35
  • 2Hung K,Wang J,Chen C. Enhancement of initial equivalency for protein structure alignment based on Encoded local structures[J].IEEE Transactions on Information Technology in Biomedicine,2012,(06):1185-1192.
  • 3Liu J,Ma J,Tian J. Pulsar/CNS integrated navigation based on federated UKF[J].Journal of Systems Engineering and Electronics,2010,(04):675-681.
  • 4Quan W,Fang J,Xu F. Hybrid simulation system study of SINS/CNS integrated navigation[J].IEEE Transactions on Aerospace and Electronic Systems,2008,(02):17-24.
  • 5Lin Keng-pei,Chen Ming-yan. On the design and analysis of the privacy-preserving SVM classifier[J].IEEE Transactions on Knowledge and Data Engineering,2011,(11):1704-1717.
  • 6Zhou S,Wang K. Localization site prediction for membrane proteins by integrating rule and SVM classification[J].IEEE Transactions on Knowledge and Data Engineering,2005,(12):1694-1705.
  • 7Tang Y,Zhang Y,Huang Z. Development of two-stage SVM-RFE gene selection strategy for microarray expression data analysis[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2007,(03):365-381.
  • 8Noel A,Schober R. Convex sensing-reporting optimization for cooperative spectrum sensing[J].IEEE Transactions on Wireless Communications,2012,(05):1900-1910.
  • 9Elhamifar E,Vidal R. Block-sparse recovery via convex optimization[J].IEEE Transactions on Signal Processing,2012,(08):4094-4107.
  • 10Agarwal A,Bartlett P L,Ravikumar P. Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization[J].IEEE Transactions on Information theory,2012,(05):3235-3249.

二级参考文献28

  • 1Benson O J. A comparison of two approaches to pure-inertial and Doppler-inertia error analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 1975, 11(4): 447-455.
  • 2Bar-Itzhack I Y, Goshen-Meskin D. Identity between INS position and velocity error models[J]. Journal of Guidance, Control, and Dynamics, 1981, 4(5): 568-570.
  • 3Bar-Itzhack I Y. Goshen-Meskin D. Identity between INS position and velocity error equations in the truc frame[J[. Journal of Guidance. Control, and Dynamics, 1988, 11(6): 590- 592.
  • 4Savage P G. Strapdown inertial navigation integration algorithm design, Part Ⅱ: Velocity and position algorithm[J]. Journalof Guidance, Control, and Dynamics, 1998, 21(2): 208-221.
  • 5Litmanovich Y A, Lesyuchevsky V M, Gusinsky V Z. Two New Classes of Strapdown Navigation Algorithms[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(1): 34-44.
  • 6Roscoe K M. Equivalency between strapdown inertial navigation coning and sculling integrals/algorithms[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 201-205.
  • 7Baziw J, Leondes C T. In-flight alignment and calibration of inertial measurement units, Part Ⅰ: General formulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(4): 439-449.
  • 8Baziw J, Leondes C T In-flight alignment and calibration of inertial measurement units, Part Ⅱ: Experimental results[J].IEEE Transactions on Aerospace and Electronic Systems, 1972, 8(4): 450-465.
  • 9Schneider A M. Kalman filter formulation for transfer alignment of strapdown inertial units[J]. Navigation: Journal of the Institute of Navigation, 1983, 30(1): 72-88.
  • 10Grewal M S, Henderson V D, Tazartes D.A. Application of Kalman filtering to the calibration and alignment of inertial navigation systems[J]. IEEE Transactions on Automatic Control, 1991, 36(1): 4-13.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部