期刊文献+

基于Markowitz投资组合模型的移动机器人目标提取与识别 被引量:1

Object extraction and recognition for mobile robot based on Markowitz portfolio model
下载PDF
导出
摘要 移动机器人足球比赛中,准确识别足球并确定其位置是比赛胜负的关键。在理想情况下,比赛场地颜色信息固定,可以通过彩色分割来识别,但是若存在环境光照较弱或不均的影响时,很难明确划分不同颜色区域之间的界限,使得对目标的准确识别受到影响。提出一种全新的彩色分割方法,通过适当选择几个不同的颜色分量,应用Markowitz投资组合模型对各个颜色分量求取最优权值,进而将最优权值作用于彩色图像,可得到不同区域间对比度增强的灰度图像,分割出所求目标。实验表明,该方法很好地弱化了光照变化带来的影响。 In mobile soccer games,high-accurately identify the soccer and determine its position are key to the final result.In ideal cases,the color information of the court is stable,and the soccer can be distinguished from surrounding objects based on the color image segmentation.However,when under the environment with weak or uneven illumination,the boundary between the different colors' domain is hard to plot definitely,which could affect the final recognition of the objectives.In this paper,a novel method for color image segmentation was proposed.According to this method,the properly selection of color component could be of great importance by invoking Markowitz portfolio model to obtain the optimal weights of the color components.Moreover,the achieved optimal weights were provided for the color images' processing,which could help to obtain the enhanced gray images within different domains and separate the object expected.The results demonstrate that the influences of illumination variation are weakened by the proposed method.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2012年第6期700-704,共5页 Journal of Chinese Inertial Technology
基金 国家自然科学基金(61073041) 黑龙江省教育厅科学技术研究项目(11553046) 黑龙江省自然科学基金资助项目(F200917)
关键词 移动机器人 机器人视觉 MARKOWITZ投资组合模型 目标提取 彩色图像分割 mobile robot robot vision Markowitz portfolio model object extraction color image segmentation
  • 相关文献

参考文献8

  • 1张学习,杨宜民,刘润丹,刘汝宁.全自主足球机器人混合视觉系统的设计与实现[J].机器人,2010,32(3):375-383. 被引量:4
  • 2Markowitz H. Portfolio selection[J].Journal of Finance,1952,(01):77-91.
  • 3Cai Fei;Hu Da-Wei.Improvement Markowitz investment profolio model based on genetic algorithm[A]湖北武汉,2010586-589.
  • 4Pan Qi-ming;Huang Xiao-xia.Mean-variance model for International Portfolio Selection[A]上海,2008632-636.
  • 5Tianyang Liu,He Guo,Yuxin Wang. A new approach for color-based object recognition with fusion of color models[A].Sanya,China,2008.456-460.
  • 6ZHANG Xue-jie,Tay A L P. Fast learning artificial neural networks (FLANN) based color image segmentation in R-G-B-S-V cluster space[A].Orlando,Florida,USA,2007.563-568.
  • 7Kuiaski D,Neto H V,Borba G,Gamba H. A study of the effect of illumination conditions and color spaces on skin segmentation[A].Rio de Janeiro,Brazil,2009.245-252.
  • 8Zuo Qi;Xie Zhi;Guo Zijian.Vision based obstacle recognition approach of a power line inspection robot[A]辽宁沈阳,2009459-462.

二级参考文献6

共引文献3

同被引文献10

  • 1Kitanov A,Bisevac S,Petrovic I.Mobile robotself-localization in complex indoor environments usingmonocular vision and 3D model[C]//2007 IEEE/ASMEInternational Conference on Advanced Intelligent Mecha-tronics.Zurich,Switzerland,2007:1-6.
  • 2Mao Jian-fei,Xiong Rong,Ding Wei-long.A compoundand robust algorithm for ellipse detection[C]//Proceedings of 16th International Conference on ArtificialReality and Telexistence-Workshops.Hangzhou,China,2006:381-386.
  • 3Greggio N,Bernardino A,Laschi C,et al.An algorithmfor the least square-fitting of ellipse[C]//Proceedings of22nd IEEE International Conference on Tools withArtificial Intelligence.Arras,France,2010:351-353.
  • 4Greggio N,Manfredi L,Laschi C,et al.RobotCubimplementation of real-time least-square fitting ofellipses[C]//Proceedings of 8th IEEE-RAS InternationalConference on Humanoid Robots.Dejong,Korea,2008:174-181.
  • 5Xiong Boli,Chen J M,Kuang Gang-yao,et al.Estimationof the repeat-pass ALOS PALSAR interferometricbaseline through direct least-square ellipse fitting[J].IEEE Transactions on Geoscience and Remote Sensing,2012,50(9):3610-3617.
  • 6Chia A Y S,Leung M K H,How-Lung Eng,Rahardja S.Ellipse detection with Hough transform in one dimensionalparametric space[C]//Proceedings of 2007 IEEE InternationalConference on Image Processing.San Antonio,USA,2007:333-336.
  • 7Rosin P L.Further five-point fit ellipse fitting[J].GraphicalModels and Image Processing,1999,61(5):245-259.
  • 8Sung Joon Ahn,Rauh W,Warnecke H-J.Least-squaresorthogonal distances fitting of circle,sphere,ellipse,hyperbola and parabola[J].Pattern Recognition,2001,34(12):2283-2303.
  • 9安新源,周宗潭,胡德文.椭圆拟合的非线性最小二乘方法[J].计算机工程与应用,2009,45(18):188-190. 被引量:29
  • 10袁理,叶露,贾建禄.基于Hough变换的椭圆检测算法[J].中国光学与应用光学,2010,3(4):379-384. 被引量:20

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部