期刊文献+

l^2序列空间上的非凸集稀疏正则化

Non-convex Sparse Regularisation on the Sequence Space l^2
下载PDF
导出
摘要 利用l2序列空间上独立作用于已知序列的系数的加权的非二次罚项的Tikhonov正则化的正则化性质可以推导出保证罚项的适定的充分条件,而且重点是带有稀疏约束的求解算子方程的应用。从在罚项在零点的线性增长,可以证明所有正则化解的稀疏。 The regularising properties of Tikhonov regularisation on the sequence space l2 with weighted non-quadratic penalty term acting separately on the coeffeients of a given sequence can be used to derive sufficient conditions for the penalty term that guarantee the wellposedness of the method, and the focus is the application to the solution of operator equations with sparsity constraints. Assuming a linear growth of the penalty term at zero, the sparsity of all regularised solutions can be proved.
出处 《四川理工学院学报(自然科学版)》 CAS 2012年第6期79-82,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 TIKHONOV正则化 稀疏 收敛率 Tikhonov regularization aparsity convergence rates
  • 相关文献

参考文献7

  • 1Daubechies I,Defiise M,De Mol C.An iterative threshol- ding algorithm for linear inverse problems with a sparsity constraint[J].Comm.Pure Appl.Math.,2004,57 (11 ): 1413- 1457.
  • 2Ramlau R, Zarzer C. On the optimization of a Tikhonov functional with non-convex sparsity constmints[J].Tech- nical report, Joharm Radon Institute for Computational and Applied Mathematics (RICAM),2009,49(2):80-85.
  • 3Griesse R, Lorenz D.A semismooth Newton method for Tikhonov functionals with sparsity constraints[J].lnverse Problems,2008,49 (2):80-85.
  • 4Grasmair M,Haltmeier M,Scherzer O. Sparse regulariza- tion with 1q penalty term[J]. Inverse Problems,2008,51 (1):24-26.
  • 5Hewitt E,Stromberg K.Real and Abstract Analysis[M]. New York:Springer,1965.
  • 6Donoho D L.Compressed sensing[J].IEEE Trans.Inform. 2006,32(1 ):78-81.
  • 7Scherzer O,Gmsmair M, Grossauer H, et al. Variational Methods in Imaging[J] .Appl. Math. Sci. ,2009,47 (2): 124- 130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部