期刊文献+

优化粒子滤波在重力辅助定位中的应用 被引量:1

The application of optimization particle filter in gravity aided positioning
下载PDF
导出
摘要 为克服常规粒子滤波在重力辅助定位中由于观测维数增加,系统后验概率密度尖峰变窄而加剧粒子退化,难以保证算法稳定性问题.将人工物理优化过程引入粒子滤波的重采样过程,实现粒子分布优化,将算法应用于重力辅助定位,利用惯性导航系统海上试验数据进行数值实验分析,对比不同算法在相同条件下定位误差估计效果.结果表明:人工物理优化能够改善粒子退化和样本贫化问题,提高了算法的稳定性;优化后,算法可以用于重力辅助定位,并获得了较高的定位精度. To overcome the problem that the algorithm is not stability because the observation dimensions increases in gravity gradient aided positioning,the system posterior probability density narrows and the particle degradation of the conventional particle filter intensifies,an improved particle filter based on artificial physics is introduced to optimize the particle distribution.The improved method incorporates Artificial Physics Optimization into resampling process of the generic particle filter to overcome the problem of particle degradation and sample impoverishment.The improved particle filter is applied into gravity gradient aided positioning by combining the sea experiment data of an inertial navigation system.The artificial physical optimization enables to improve particle degradation and optimize algorithm stability.After optimizing,the algorithm is adopted in gravity aided positioning,which has better estimation precision.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2012年第12期145-148,共4页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(60834005)
关键词 粒子滤波 人工物理优化 重力辅助定位 particle filter artificial physics optimization gravity aided positioning
  • 相关文献

参考文献7

  • 1ZHAO J, LI Z Y. Particle filter based on particle swarm optimization resampling for vision tracking [ J ]. Expert Systems with Applications, 2010, 37 (12) : 8910 - 8914.
  • 2PARK S, HWANG J P, KIM E, et al. A new evolutionary particle filter for the prevention of sample impoverishment [J ]. IEEE Transactions on Evolutionary Computation, 2009, 13(4): 801-809.
  • 3XU B L, ZHU J H, XU H G. An ant stochastic decision based particle filter and its convergence [ J ]. Signal Processing, 2010,90 (9) :2731 - 2748.
  • 4WILLIAM M, SPEARS W M,SPEARS D F, et al. An overview of physicomimetics [ J ]. Swarm Robotics Lecture Notes in Computer Science,2005,3342 : 85 - 87.
  • 5XIE L P, ZENG J C. A global optimization based on Physicomimetics framework [ C ]//The 2009 World Summit on Genetic and Evolutionary Computation. Shanghai : [ s. n. ] , 2009.
  • 6KRIBI F, MINET P, LAOUITI A. Redeploying mobile wireless sensor networks with virtual forces [ C ]//The 2nd IFIP Wireless Days. Paris : [ s. n. ] , 2009.
  • 7王艳,曾建潮.一种基于拟态物理学优化的多目标优化算法[J].控制与决策,2010,25(7):1040-1044. 被引量:25

二级参考文献12

  • 1张利彪,周春光,马铭,刘小华.基于粒子群算法求解多目标优化问题[J].计算机研究与发展,2004,41(7):1286-1291. 被引量:225
  • 2Xie L P, Zeng J C. A global otimization bsed on physieomimetics framework[C]. The 2009 World Summit on Genetic and Evolutionary Computation. Shanghai, 2009.
  • 3Xie L E Zeng J C, Cui Z H. Using artificial physics to solve global optimization problems[C]. The 8th IEEE Int Conf on Cognitive Informatics. Hong Kong, 2009.
  • 4Margarita Reyes-Sierra, Carlos A Coello Coello. Multi- objective particle swarm optimizers: A survey of the state- op-the-art[J]. Int J of Computational Intelligence Research, 2006, 2(3): 287-308.
  • 5Carlos A Coello Coello. MOPSO: A proposal for multiple objective particle swarm optimization[C]. CEC 2002. Honolulu, 2002.
  • 6Deb Kalyanmoy, Amrit Pratap, Sameer Agrawal, et al. A fast and elitist multi-objective genetic algorithra: NSGA- II[J]. IEEE Trans on Evolutionary Computation. 2002, 6(2): 182-197.
  • 7Carlos A Coello Cocllo, GTegorio Toscano Pulido, Maximino Salazar Lechuga. Handling multiple objectives with particle swarm optimization[J]. IEEE Trans on Evolutionary Computation, 2004, 8(3): 256-279.
  • 8Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C]. SAC 2002. Madrid, 2002: 603-607.
  • 9Parsopoulos K E, Tasoulis D K, Vrahatis M N. Multi- objective optimization using parallel vector evaluated particle swarm optimization[C]. AIA 2004. Innsbruck: ACTA Press, 2004: 823-828.
  • 10Carlos A Coello Coello, Gregorio Toscano Pulido. Multiobjective structural optimization using a micro- genetic algorithm[J]. Structural and Multidisciplinary Optimization, 2005, 30(5): 388-403.

共引文献24

同被引文献14

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部