摘要
探讨演化博弈与逻辑动态系统的优化控制的关系.主要内容包括三个方面:1)讨论基于演化博弈的逻辑动态(控制)系统的建模,即如何从演化动态博弈导出多值逻辑系统的优化控制问题;2)多值逻辑系统在平均收益和带贴现因子的总收益两种性能指标下的优化控制的基本结论与算法;3)如何从逻辑动态系统的最优控制导出演化博弈的纳什均衡.使用的基本工具是矩阵的半张量积,基本方法是将逻辑动态系统转化为基于矩阵的离散时间动态系统和博弈策略的矩阵表示.
This paper concerned with the relationship between dynamic games and opti- mal control of logical dynamic systems. The following three problems have been investigated: 1) The modeJing of logical dynamic (control) systems based on dynamic games; 2) The results and algorithms for the optimizations of logical dynamic (control) systems with two kinds of criterions: average payoffs, and time-discounted payoffs; 3) Obtaining Nash equilibria from op- timal controls of logical dynamic (control) systems. The basic tool used in this paper is the semi-tensor product of matrices, and the basic technique implemented is the matrix expressions of logical dynamic (control) systems and dynamic games.
出处
《系统科学与数学》
CSCD
北大核心
2012年第10期1226-1238,共13页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(61074114)资助课题
关键词
演化博弈
逻辑动态系统
最优控制
纳什均衡
矩阵半张量积
Dynamic games, logical dynamic systems, optimal control, Nash equilibria, semi-tensor product.