期刊文献+

ax+bmodp比特安全的列表译码证明 被引量:2

PROVING THE SECURITY OF ALL BITS OF ax + b mod p USING LIST DECODING
原文传递
导出
摘要 2003年Akavia基于列表译码提出研究硬核谓词的一般框架,并将该方法成功地应用于许多硬核谓词的研究.但是,对于ax+b mod p的任意比特是任意单向函数的硬核谓词,这个关于单向函数的一般性结论能否适用,仍是一个公开问题.文章利用这种新方法研究积性码可接近的单向陷门函数的比特安全性,并且证明ax+b mod p的任意比特是p阶循环群上该类单向函数的硬核谓词. In 2003, Akavia, et al. introduced a unifying framework to study the hard- core predicates using list decoding and succeeded in the the study of many hard-core predicates. However, it is still an open question whether the general result that any bit of ax + bmodp is a hard-core predicate for any one-way function can be proved by list decoding. In this paper, we utilize this new idea to study the security of one-way function with multiplicative access, and prove that any bit of ax + bmodp is a hard-core predicate for any one-way function defined on a cyclic group of order p with multiplicative access for prime p.
出处 《系统科学与数学》 CSCD 北大核心 2012年第11期1366-1376,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60970154,60970153)资助项目 中国科学院战略性先导专项,子课题海运信息安全共性关键技术研究(XDA06010702)
关键词 硬核谓词 列表译码 单向函数 比特安全 Hard-core predicate, list decoding, one-way function, bit security.
  • 相关文献

参考文献9

  • 1Blum M and Micali S. How to generate cryptographically strong sequences of pseudo-random bits. SIAM Journal on Computing, 1984, 13(4): 850-864.
  • 2Goldreich O and Levin L. A hard-core predicate for all one-way functions. Proceedings of the 21st Annual ACM Symposium on Theory of Computing, Johnson D S, New York, ACM, 1989.
  • 3Naslund M. Universal hash functions & hard core bits. Advances in Cryptology-EUROCRYPT'95, LCNS 921, Louis C. Guillou and Jean-Jacques Quisquater, Berlin/Heidelberg, Springer, 1995.
  • 4Naslund M. All bits ax + b mod p are hard. Advances in Cryptology-CRYPTO'96, LNCS 1109, Neal Koblitz, Berlin, Springer, 1996.
  • 5Hastad J and Naslund M. The security of all RSA and discrete log bits. Journal of the ACM, 2004, 51: 187-230.
  • 6Catalano D, Gennaro R and Howgrave-Graham N. Paillier's trapdoor function hides up to O(n) bits. Journal of Cryptology, 2002, 15(4): 251-269.
  • 7Su D and Lv K A new hard-core predicate of Paillier's trapdoor function. Progress in Cryptology- Indocrypt, LNCS 5922, Bimal Roy and Nicolas Sendrier, Berlin/Heidelberg, Springer-Verlag, 2009.
  • 8Akavia A, Goldwasser S and Safra S. Proving hard-core predicates using list decoding. Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science, Washington DC, IEEE Computer Society, 2003.
  • 9Morillo P and Rafols C. The Security of all bits using list decoding. Proceedings of 12th Inter- national Conference on Practice and Theory in Public Key Cryptography, LNCS 5443, Stanislaw Jarecki and Gene Tsudik, Berlin/Heidelberg, Springer, 2009.

同被引文献24

  • 1Boneh D,Venkatesan R.Hardness of Computing the MostSignificant Bits of Secret Keys in Diffie-Hellman and RelatedSchemes[C]//Proc.of Crypto’96.[S.1.]:Springer-Verlag,1996.
  • 2Nguyen P Q,Shparlinski I E.The Insecurity of the DigitalSignature Algorithm with Partially Known Nonces[EB/OL].(2012-04-08).http://www.di.ens.fr/~pnguyen.
  • 3Vasco M I G,Naslund M,Shparlinski I E.The Hidden NumberProblem in Extension Fields and Its Applications[C]//Proc.ofthe 5th Latin American Symposium on Theoretical Informatics.London,UK:Springer-Verlag,2002:105-117.
  • 4Hlavac M,Rosa T.Extend Hidden Number Problem and itsCryptanalytic Applications[C]//Proc.of the 13th InternationalConference on Selected Areas in Cryptography.Germany,Berlin:Springer-Verlag,2007.
  • 5Moreno C J,Moreno O.Exponential Sums and GoppaCodes//Proc.of AMS’91.[S.1.]:IEEE Press,1991:523-531.
  • 6Babai L.On Lovasz Lattice Reduction and the Nearest LatticePoint Problem[J].Combinatorica,1986,6(1):1-13.
  • 7Garefalakis T.The Hidden Number Problem with Non-primeModulus[C]//Proc.of Progress in Computer Science andApplied Logic,Basel,Switzerland:Birkhauser-Verlag,2001.
  • 8Catalano D,Nguyen P Q,Stern J.The Hardness of HenselLifting:The Case of RSA and Discrete Logarithm[C]//Proc.ofASIACRYPT’02.Germany,Berlin:Springer-Verlag 2002:299-310.
  • 9Nguyen P Q,Stern J.Lattice Reduction in Cryptology:AnUpdate[C]//Proc.of ANTS-IV’00.[S.1.]:Springer-Verlag,2000:85-112.
  • 10Nguyen P Q,Stern J.The Two Faces of Lattices in Crypto-logy[C]//Proc.of CALC’01.[S.1.]:Springer-Verlag,2001:146-180.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部