期刊文献+

带跳混合分数布朗运动下利差期权定价 被引量:14

PRICING FOR OUTER PERFORMANCE OPTION IN MIXED FRACTIONAL BROWIAN MOTION WITH JUMP
原文传递
导出
摘要 在股票价格遵循带跳混合分数布朗运动过程假设下,得到了利差期权所满足的一般偏微分方程,并依据此偏微分方程获得了利差期权和标准欧式期权定价公式.推广了关于Black-Scholes期权定价的结论. Under the hypothesis that stock price obeys the fractional Brownian motion with jump, the general partial differential equation for outer performance option is presented, and, by this partial differential equation, pricing formula of the outer performance option and European option is obtained. So the result of Black-Scholes option pricing is generalized.
出处 《系统科学与数学》 CSCD 北大核心 2012年第11期1377-1385,共9页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(70471057 71171164) 西北工业大学博士论文创新基金(CX201235) 西北工业大学研究生种子基金(Z2011073)资助课题
关键词 带跳混合分数布朗运动 利差期权 欧式期权 偏微分方程 Fractional Brownian motion with jump, outer performance option, Europeanoption, partial differential equation.
  • 相关文献

参考文献11

  • 1薛红.随机利率情形下的多维Black-Scholes模型[J].工程数学学报,2005,22(4):645-652. 被引量:12
  • 2Cont R, Tankov P. Financial Modelling with Jump Processes. London: Chapman and Hall, 2004.
  • 3Schoutens W. Levy Processes in Finance: Pricing Financial Derivatives. New York: Wiley, 2003.
  • 4Ball C, Torous W. On jumps in common stock prices and their impact on call option pricing. Finance, 1995, 40: 155-173.
  • 5Corcuera J M, Nualart D, Schoutens W. Completion of a levy market by power-jump assets. Finance Stochastics, 2005, 9: 109-127.
  • 6Luciano E, Schoutens W. A multivariate jump-driven financial asset model. Quantitative Finance, 2006, 6(5): 385-402.
  • 7Elliott R J, Hoek J. A general fractional white noise theory and applications to finance. Mathe- matical Finance, 2003, 13(2): 301-330.
  • 8Benth F E. On arbitrage-free pricing of weather derivatives based on fractional Brownian motion. Applied Mathematical Finance, 2003, 10(4): 303-324.
  • 9Bjork T, Hult H. A note on Wick products and the fractional Black-Scholes model. Finance and Stochastics, 2005, 9(2): 197-209.
  • 10Guasoni P. No arbitrage under transaction costs, with fractional Brownian motion and beyond. Mathematical Finance, 2006, 16(3): 569-582.

二级参考文献7

共引文献11

同被引文献119

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部