期刊文献+

半序空间中二元算子方程的可解性及应用 被引量:5

SOLVABILITY OF BINARY OPERATOR EQUATIONS IN PARTIAL ORDERED SPACES AND APPLICATIONS
原文传递
导出
摘要 首先在Banach空间中,利用半序方法和锥理论,研究了混合单调算子方程Lx=N(x,y)在反向上下解条件下的耦合解的存在性.然后在完备度量空间和Banach空间中,利用半序方法和锥理论,研究算子方程Lx=N(x,x)解的存在性唯一性问题,得到了一些新结论.所得的部分结论改进了最近一些文献中的重要结果.最后,将所得的部分结果应用于非线性算子固有值与固有元的存在性的研究中. In this paper, the existence of the coupled solution for the operator equation Lx = N(x, x) is proved by the techniques of partial order and the theory of cone in Banach spaces under the condition of counter upper-down solutions. Then, by means of the techniques of partial order and the theory of cone, the existence and uniqueness of solution for the mixed monotone operator equation Lx = N(x, x) is discussed in complete metric spaces and Banach spaces, respectively. Some of the main results presented in this work improve the corresponding results in the recent works. Finally, part of the given results is applied to the studies of the existence of eigenvalues and eigenvectors for nonlinear operators.
作者 尹建东
出处 《系统科学与数学》 CSCD 北大核心 2012年第11期1449-1458,共10页 Journal of Systems Science and Mathematical Sciences
基金 江西省自然科学基金项目(20114BAB201006) 江西省教育厅自然科学基金项目(GJJ11295)
关键词 半序 Banach空间 混合单调算子 Partial order, zone, Banach space, mixed monotone operator.
  • 相关文献

参考文献10

  • 1Guo D J, Lakshmikantham V. Nonlinear Problems in Abstract Cones. New York: Academic Press, 1988.
  • 2Guo D J, Lakshmikantham V. Coupled fixed points of nonlinear operator with applications. Non- linear. Anal., 1987, 11: 411-416.
  • 3郭大钧.非线性分析中的半序方法[M].济南:山东科学技术出版社,2000.18-141.
  • 4Guo D J. Existence and uniqueness of positive fixed points for mixed monotone operators and applications. Appl. Anal., 1992, 46: 91-100.
  • 5Liang Z D, Wang W X, Li S J. On concave operators. Acta Mathematica Sin., 2006, 22(2): 577-582.
  • 6Zhao Z Q. Existence of positive fixed points for a convex operators with applications. Acta Math- ematica Sin. (Chinese Series), 2006, 49(1): 139-144.
  • 7Caristi J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc., 1976, 215:241-251.
  • 8Feng Y Q, Liu S Y. Solvability of an operator equation in partial order space. Acta Mathematica Sin. (Chinese Series), 2003, 46: 411-416.
  • 9Feng Y Q, Liu S Y. Solvability of an operator equation in partial order complete metric space and partial order Banach space. Acta Mathematica Sin. (Chinese Series), 2005, 48: 109-114.
  • 10Liu Z, Zhu C X. Solvability theorems with applications of an operator equation in partial order space, Acta Mathematica Sin. (Chinese Series), 2009, 52(6): 1181-1188.

共引文献35

同被引文献45

  • 1刘三阳,冯育强.半序度量空间与半序Banach空间中一类算子方程的可解性[J].数学学报(中文版),2005,48(1):109-114. 被引量:4
  • 2张宪.序压缩映射的不动点定理[J].数学学报(中文版),2005,48(5):973-978. 被引量:40
  • 3傅俊义.范数一致光滑性的一个特征[J].南昌大学学报(理科版),2006,30(3):209-210. 被引量:8
  • 4郭大钧.非线性分析中的半序方法[M].济南:山东科学技术出版社,2000.18-141.
  • 5Lakshmikantham V, Ciric L. Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal., 2009, 70(12): 4341-4349.
  • 6Borcut M. Tripled coincidence theorems for contractive type mappings in partiMly ordered metric spaces. Appl. Math. Comput., 2012, 218(14): 7339-7346.
  • 7Berinde V. Coupled fixed point theorems for contractive mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal., 2012, 75(6): 3218-3228.
  • 8Samet B. Coupled fixed point theorems for a generalized Meir-Keeler contraction in partially ordered metric spaces. Nonlinear Anal., 2010, 72(12): 4508-4517.
  • 9Nguyen V L, Nguyen X T. Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal., 2011, 74(3): 983-992.
  • 10Berinde V. Generalized coupled fixed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal., 2011, 74(18): 7347-7355.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部