期刊文献+

碳离子硅橡胶改性材料的表面性能检测及其细胞相容性评价 被引量:3

Surface properties and cell compatibility of carbon ion implanted silicone rubber
下载PDF
导出
摘要 目的采用碳离子对硅橡胶(silicone rubber,SR)进行表面注入改性,并对改性材料进行形貌观察、理化性能检测及其细胞相容性评价。方法采用多功能离子注入机在不同碳离子注入量下对SR进行表面注入改性,得到碳-硅橡胶(Carbon ion implanted silicone rubber,C-SR),并采用扫描电镜(Scanning electron microscope,SEM)、傅立叶红外光谱(Fourier transform infrared spectrometer,FTIR)、X射线衍射(X-ray diffraction,XRD)技术对材料的表面性能进行检测。采用细胞增殖实验、免疫荧光及Western blot技术观察人真皮成纤维细胞在改性后材料表面的生长情况。结果 SEM发现各材料的表面形貌无明显差异,FTIR观察各材料的图谱无明显变化,XRD提示碳离子注入后形成了新的晶体结构,但差异并不显著。细胞增殖实验结果显示C-SR增殖能力较SR有明显提高(P<0.05)。免疫荧光及Western blot提示碳离子注入后,材料的细胞黏附性增加。结论采用碳离子注入制作的C-SR改性材料,与纯SR相比,表面性能和细胞相容性均得到了提高,有可能作为新的软组织填充材料。 Objective To evaluate the morphology, physicochemical properties and cell compatibility of silicone rubber (SR) after carbon ion being injected to its surface. Methods Different volumes of carbon ion injection was injected into the surface of SR with the aid of a multi-function ion injection machine. The obtained SR was named as carbon-silicone rubber(C-SR). Scanning electron microscopy(SEM), Fourier trans- form infrared spectrometry(FTIR) and X-ray diffraction (XRD) were used to analyze the surface properties of modified materials. Cell proliferation, immunofluorescenee staining and Western blot analysis were used to analyze the biocompatibility of modified materials after cocultured with human dermal fibroblasts. Results SEM and FFIR indicated that there was no any obvious difference in the morphology of the surface of modified C-SR. XRD showed that a new crystal structure was formed on the surface of the modified material after carbon-ion implantation, but the changes were not obvious compared with original materials. Cell proliferation experiment illustrated that human dermal fibroblasts grow better in C-SR than in SR ( P 〈 0. 05 ). Immunofluorescence staining and Western blotting indicated that the expression of vinculin was enhanced in the C-SR materials, indicating that the carbon-ion implantation increased the cell adhesion. Conclusion Carbon-ion implantation to SR improves the surface properties and cell compatibility. C-SR might be used as a new filling material of soft tissue.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2013年第2期123-126,共4页 Journal of Third Military Medical University
基金 国家自然科学基金(81071574) 第三军医大学青年人才基金(2009XQN36)~~
关键词 硅橡胶 细胞相容性 离子注入 表面改性 silicone rubber cell compatibility ion implantation surface modification
  • 相关文献

参考文献16

  • 1Hatamleh M M, Watts D C. Mechanical properties and bonding of maxillofacial silicone elastomers [ J ]. Dent Mater, 2010, 26 ( 2 ) : 185 - 191.
  • 2Ma Z, Mao Z, Gao C. Surface modification and property analysis of bi- omedical polymers used for tissue engineering [ J ]. Colloids Surf B Biointerfaces, 2007, 60(2): 137- 157.
  • 3Ren T B, Weigel T, Groth T, et al. Microwave plasma surface modifi- cation of silicone elastomer with allylamine for improvement of biocom- patibility[ J]. J Biomed Mater Res A, 2008, 86( 1 ) : 209 -219.
  • 4Cordeiro A L, Zschoche S, Janke A, et al. Functionalization of poly (dimethylsiloxane) surfaces with maleic anhydride copolymer films [J]. Langmuir, 2009, 25(3): 1509- 1517.
  • 5Khanna R, Katti K S, Katti D R. Nanomechanics of surface modified nanohydroxyapatite particulates used in biomaterials[ J]. J Eng Mech, 2009, 135(5) : 468 -478.
  • 6Gan B K, Nosworthy N J, McKenzie D R, et al. Plasma immersion ion implantation treatment of polyethylene for enhanced binding of active horseradish peroxidase [ J ]. J Biomed Mater Res A, 2008, 85 ( 3 ) .' 605 - 610.
  • 7Bellamy K, Limbert G, Waters M G, et al. An elastomeric material for facial prostheses: synthesis, experimental and numerical testing aspects [ J]. Biomaterials, 2003, 24 (27): 5061 -5066.
  • 8De-Maeztu M A, Alava J I, Gay-Escoda C. Ion implantation: surface treatment for improving the bone integration of titanium and Ti6Al4V dental implants[J]. Clin Oral Implants Res, 2003, 14( 1 ) : 57 -62.
  • 9Thevenot P, Hu W J, Tang L. Surface chemistry influences implant biocompatibility[ J ]. Curt Top Med Chem, 2008, 8 (4) : 270 - 280.
  • 10Hauser J, Zietlow J, Koller M, et al. Enhanced cell adhesion to sili- cone implant material through plasma surface modification[ J]. J Ma- ter Sci Mater Med, 2009, 20(12) : 2541 -2548.

二级参考文献56

  • 1Geiger B, Tokuyasu K T, Dutton A H, et al. Vineulin, an intraeellular protein localized at specialized sites where mierofilament bundles terminate at cell membranes [J]. Proc Natl Acad Sci U S A, 1980, 77 (7): 4127-4131.
  • 2Ziegler W H, Gingras A R, Critchley D R, et al. Integrin connections to the cytoskeleton through talin and vinculin [ J ]. Biochem Soc Trans, 2008, 36 (Pt 2) : 235-239.
  • 3Ezzell R M, Goldmann W H, Wang N, et al. Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton [ J]. Exp Cell Res, 1997, 231 (1): 14-26.
  • 4Geiger B, Bershadsky A. Exploring the neighborhood: adhesioncoupled cell mechanosensors [J]. Cell, 2002, 110 (2) : 139-142.
  • 5Ziegler W H, Liddington R C, Critchley D R. The structure and regulation of vinculin [J]. Trends Cell Biol, 2006, 16 (9) : 453-460.
  • 6Critchley D R. Focal adhesions - the cytoskeletal connection [J]. Curr Opin Cell Biol, 2000, 12 (1): 133-139.
  • 7Borgon R A, Vonrhein C, Bricogne G, et al. Crystal structure of human vinculin [J]. Structure, 2004, 12 (7) : 1189-1197.
  • 8Bakolitsa C, Cohen D M, Bankston L A, et al. Structural basis for vinculin activation at sites of cell adhesion [J]. Nature, 2004, 430 (6999) : 583-586.
  • 9Lee S E, Chunsfivirot S, Kamm R D, et al. Molecular dynamics study of talin-vinculin binding [J]. Biophys J, 2008, 95 (4) : 2027- 2036.
  • 10Izard T, Evans G, Borgon R A, et al. Vinculin activation by talin through helical bundle conversion [J]. Nature, 2004, 427 (6970): 171-175.

共引文献5

同被引文献21

  • 1张承焱.医用高分子材料的应用研究及发展(二)[J].中国医疗器械信息,2005,11(6):17-22. 被引量:7
  • 2张一鸣,王科,樊东力.医用硅橡胶生物相容性改性研究进展[J].重庆医学,2006,35(3):274-276. 被引量:5
  • 3赵治国,万怡灶,王玉林,黄远.生物材料的离子注入表面改性[J].金属热处理,2006,31(8):4-7. 被引量:3
  • 4武卫莉,李佳.硅橡胶的生物医学材料特性[J].中国组织工程研究与临床康复,2007,11(1):145-147. 被引量:23
  • 5JUNZO I, HIROSHI T, YASUHITO G. Sur- face modification by negative-ion implantation [J]. Surface and Coatings Technology, 2009, 203(17-18): 2 351-2 356.
  • 6HIROSHI T, HITOSHI S, YASUHIRO U, et al. Extracellular matrix absorption properties of negative ion-implanted polystyrene, polydimeth- ylsiloxane and poly-lactic acid [J]. Surface Coatings Technology, 2002, 158 : 620-623.
  • 7HIROSHI T, HITOSHI S, HIROKO S, et al. Neuron attachment properties of carbon negative- ion implanted bioabsorbable polymer of poly- lacticacid[J]. Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms, 2002, 191(1): 815-819.
  • 8HIROSHI T, IZUKAWAA M, IKEGUCHIB R, et al. Improvement of polydimethylsiloxane guide tube for nerve regeneration treatment by carbon negative-ion implantation[J].Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003, 206(1): 507-511.
  • 9HIROSHI T, PIYANUCH S, MITSUTAKA H, et al. Negative ion implantation for pattering mesenchymal-stem cell adhesion on silicone rub- ber and differentiation into nerve cells with keep- ing their adhesion pattern[J]. Surface and Coat- ings Technology, 2009, 203 (17-18): 2 562- 2 565.
  • 10杜学仁,王继东,张仲兰,等.铯束溅射负离子源[J].原子能科学技术,1985,19(5):564-569.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部