期刊文献+

交流磁场对Sn-20%Pb合金电阻的影响 被引量:2

EFFECT OF AC MAGNETIC FIELD ON ELECTRIC RESISTANCE OF Sn-20%Pb ALLOY
原文传递
导出
摘要 在不同温度测量Sn-20%Pb合金直流电阻时,沿纵向施加交流磁场.结果发现:对固态样品,无论是在室温还是在接近固相线的温度,磁场都没有引起电阻增加.对液态样品,施加磁场后,电阻开始逐渐增大,停止施加磁场,增大的电阻维持一段时间不变后,才缓慢恢复到施加磁场前的初始值.金相显微镜和扫描电镜结果表明,交流磁场不仅使初生β-Sn的晶粒明显细化,还使Pb在初生β-Sn的晶粒内的含量增加,且Pb的分布更均匀.利用无序理论,对实验结果进行定性讨论,认为交流磁场的电磁搅拌作用破坏了Sn-20%Pb熔体的短程有序,增大了系统的无序度,使部分扩展态电子转变成局域态电子,从而使熔体的电阻增大. The electric resistance of Sn-20%Pb alloy was measured at different temperatures when the AC magnetic field was applied. The results showed that the AC magnetic field had no effect on the electric resistance of solid Sn-20%Pb alloy, but when it was applied on the liquid Sn-20%Pb alloy, the electric resistance of alloy increased gradually. After the AC magnetic field was stopped, the electric resistance remained at a constant value for a long time, and then slowly decreased to the value before applying the AC magnetic field. The results of metallographic microscope and SEM showed that the AC magnetic field not only refined the primary/^-Sn grain, but also increased the Pb content in primary ^-Sn grain, so that the distribution of Pb was more uniform than that in the sample without magnetic field. The Anderson's theory of disorder has been used to explain the experimental results. It was considered that the electromagnetic stirring caused by AC magnetic field destroyed the short range order of the Sn-20%Pb melt, improved the disorder degree of the system, transformed some extended states electrons into localized states electrons, consequently increased the electric resistance of the melts.
出处 《金属学报》 SCIE EI CAS CSCD 北大核心 2013年第1期101-106,共6页 Acta Metallurgica Sinica
基金 国家自然科学基金项目51074207和50974037 国家"十二五"科技支撑计划项目2011BAE22B03资助~~
关键词 交流磁场 电阻 Sn-20%Pb合金 AC magnetic field, electric resistance, Sn-20%Pb alloy
  • 相关文献

参考文献4

二级参考文献19

  • 1Dong J, Cui J Z, Yu F X, Ban C Y, Zhao Z H. Metall Mater Trans, 2004; 35A: 2487.
  • 2Zhang H T, Nagaumi H, Zuo Y B, Cui J Z. Mater Sci Eng, 2007; A448: 189.
  • 3Zuo Y B, Nagaumi H, Cui J Z. J Mater Process Technol, 2008; 197: 109.
  • 4ESKIN D G. Physical Metallurgy of Direct Chill Casting of Aluminum Alloys. London: CRC Press, 2008: 12.
  • 5Turchin A N, Eskin D G, Katgerman L. Metall Mater Trans, 2007; 38A: 1317.
  • 6Diepers H J, Beckermann C, Steinbach I. Acta Mater, 1999; 47: 3663.
  • 7Stefanescu D M. Science and Engineering of Casting Solidification. New York: Springer Science+Business Media, 2008: 39.
  • 8Tong X, Beckermann C. J Cryst Growth, 1998; 187: 289.
  • 9Voller V R. Int J Heat Mass Transfer, 2000; 43: 2047.
  • 10Voller V R, Beckermann C. Metall Mater Trans, 1999; 30A: 2183.

共引文献60

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部