期刊文献+

北京地区HJ-1卫星CCD数据的气溶胶反演及在大气校正中的应用 被引量:21

Aerosol retrieval and atmospheric correction of HJ-1 CCD data over Beijing
原文传递
导出
摘要 与现有的大气卫星传感器相比,环境一号卫星(HJ-1)CCD相机具有较高的空间分辨率(30m),使得在城市地区找到光谱纯像元的机率大大增加。本文提出一种基于纯像元提取的城市地区气溶胶光学厚度(AerosolOpticalDepth,AOD)反演算法,利用像元纯净指数来提取CCD影像上的纯像元,并由HJ-1A星和B星的多时相CCD观测数据结合地表双向反射率模型确定纯像元的地表反射特性,在此基础上反演AOD。与AERONET地基测量数据的对比表明,该算法具有较高精度,相关系数为0.83,线性拟合斜率为1.091,截距为0.053。基于该方法的AOD反演结果作为输入,能较大程度提高HJ-1卫星CCD影像大气校正的精度。 Compared to moderate/low resolution satellite sensors for aerosol detection, the high spatial resolution of H J-1 CCD camera (30 m) provides an opportunity to easily find spectrally pure pixels (SPP) over urban areas. In this study, we developed an SPP algorithm for urban Aerosol Optical Depth (AOD) retrieval using HJ-1 CCD data. Pixel Purity Index (PPI) is used to identify the pure pixels in the image. The surface reflectances of the pure pixels were estimated from the multi-temporal CCD measurements of H J-1A and H J-1B based on the surface Bi-directional Reflectance Distribution Function (BRDF) model. Then the AOD can be retrieved from satellite measurements. The comparison with ground-based AErosol RObotic NETwork AERONET AOD measurements shows good performance of our algorithm. A significant correlation coefficient with R=0.83 was obtained with a linear regression slope close to 1 and a intercept of 0.053. With the retrieved AOD as an input, HJ-1CCD data over urban areas was significantly improved after the atmospheric correction.
出处 《遥感学报》 EI CSCD 北大核心 2013年第1期151-164,共14页 NATIONAL REMOTE SENSING BULLETIN
基金 国家重点基础研究发展计划(973计划)(编号:2010CB950803)~~
关键词 气溶胶光学厚度 气溶胶反演 环境一号卫星 大气校正 纯像元 aerosol optical depth, aerosol retrieval, H J-1 CCD, atmospheric correction, pure pixel
  • 相关文献

参考文献25

  • 1Boardman J W, Kruse F A and Green R O. 1993. Automating spectral unmixing of AV I R IS data using convex geometry concepts // Summaries, Forth Annual JPL Airborne Geoscience Workshop. Pasadena, CA, US: JPL Publication, 26( 1 ): 11-14.
  • 2Breon F M, Vermeulen A and Descloitres J. 201 I. An evaluation of satellite aerosol products against sunphotometer measurements. Remote Sensing Environment, 115(12): 3102-3111 [DOI: 10.1016/ j.rse.2011.06.017].
  • 3Diner D J, Martonchik J V, Kahn R A, Pinty B, Gobron N, Nelson D L and Holben B N. 2005. Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land. Remote Sensing of Environment, 94(2): 155-171.
  • 4Fallah A, Jaja J, Liang S, Kaufman Y J and Townshend J R G. 1997. Fast algorithms for atmospheric correction from Landsat TM over land. Journal of Geophysical Research, 102:17173-17186.
  • 5Holben B N, Eck T E Slutsker I, Tanre D, Buis J E Setzer A, Vermote E, Reagan J A, Kaufman Y J, Nakajima T, Lavenu F, Jankowlak 1 and Smirnov A. 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment, 66(1): 1-16 [DOI: 10.1016/S0034-4257(98) 00031-5].
  • 6Hsu N C, Tsay S C, King M D and Herman J R. 2004. Aerosol properties over bright-reflecting source regions. IEEE Transacitons on Geoscience and Remote Sensing, 42(3): 557-569 [DOI: 10.1109/ TGRS.2004.824067].
  • 7胡姝婧,胡德勇,赵文吉.基于LSMM和改进的FCM提取城市植被覆盖度--以北京市海淀区为例[J].生态学报,2010,30(4):1018-1024. 被引量:16
  • 8Kaufman Y J. 1989. The atmospheric effect on remote sensing and its correction//Asrar G, ed. Theory and Application of Optical Re- mote Sensing, New York: Wiley: 341.
  • 9Kaufman Y J and Sendra C. 1988. Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8): 1357-1381 [DOI: 10.1080/ 01431168808954942].
  • 10Kaufman Y J, Tanre D, Remer L A, Vermote E F, Chu A and Holben B N. 1997. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research, 102(D14): 17051-17067 [DOI: 10.1029/96JD03988].

二级参考文献3

共引文献15

同被引文献303

引证文献21

二级引证文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部