摘要
A novel bovine serum albumin (BSA) imprinted Mn-doped ZnS quantum dots (Mn:ZnS QDs) is firstly reported. The molecular imprinted polymer (MIP) functionalized Mn:ZnS QDs (Mn:ZnS @SiO2@MIP) include the preparation of Mn:ZnS QDs, the coating of silica on the surface of Mn:ZnS QDs, and the functional polymerization by sol-gel reaction using 3-aminophenylboronic acid as the functional and cross-linking monomer in the presence of BSA (Mn:ZnS@SiO2@MIP-BSA), and then the elution of the imprinted BSA on the surface of Mn:ZnS@SiO2 QDs. The results showed that the phosphorescence of Mn:ZnS@SiO2@MIP is stronger quenched by BSA than that of non-imprinted one (Mn:ZnS@SiO2@NIP), indicating that the selectivity of the imprinted Mn:ZnS quantum dots toward BSA is superior to that of non-imprinted one.
A novel bovine serum albumin (BSA) imprinted Mn-doped ZnS quantum dots (Mn:ZnS QDs) is firstly reported. The molecular imprinted polymer (MIP) functionalized Mn:ZnS QDs (Mn:ZnS @SiO2@MIP) include the preparation of Mn:ZnS QDs, the coating of silica on the surface of Mn:ZnS QDs, and the functional polymerization by sol-gel reaction using 3-aminophenylboronic acid as the functional and cross-linking monomer in the presence of BSA (Mn:ZnS@SiO2@MIP-BSA), and then the elution of the imprinted BSA on the surface of Mn:ZnS@SiO2 QDs. The results showed that the phosphorescence of Mn:ZnS@SiO2@MIP is stronger quenched by BSA than that of non-imprinted one (Mn:ZnS@SiO2@NIP), indicating that the selectivity of the imprinted Mn:ZnS quantum dots toward BSA is superior to that of non-imprinted one.
基金
financial support from the Hubei Science Foundation(No.2010CDA061)