摘要
本文利用正交向量,从几何视角研究周期序列的分解和表示。通过内积运算,推导离散傅里叶级数公式。与传统教学方法相比,本文提出的授课方法避免了对完备正交函数集和最小均方误差准则下线性逼近的分析,使学生更为直观地理解周期序列的分解方法和指数形式的傅立叶级数的含义。
In this paper, decomposition and representation of periodic sequences is investigated from geometric view based on orthogonal vectors. In addition, discrete Fourier series formulas are derived by inner product. Com- pared with the traditional teaching methods, the new geometric methods avoid analyzing complete orthogonal func- tions set and minimum mean square error criterion for linear approximation, which make students understand the meaning of the decomposition method for periodic sequences and discrete Fourier series more intuitively.
出处
《电气电子教学学报》
2012年第6期28-30,33,共4页
Journal of Electrical and Electronic Education
关键词
几何
离散傅里叶级数
正交向量
geometric, discrete Fourier series, orthogonal vectors