期刊文献+

采用双正交小波和分段正交匹配追踪实现压缩感知图像重构研究 被引量:2

Reconstruction Compressed Sensing Image Renlization Pursuited by Using Biorthogonal Wavelet and Stagewise Orthogonal Matching
下载PDF
导出
摘要 采用B样条双正交小波实现图像的稀疏化,用低采样率对高频子带进行压缩感知采样,通过分段正交匹配追踪重建算法实现图像重构.实验结果表明:方案具有较好的图像重构效果,在低通滤波器消失矩相同的情况下,高通滤波器的消失矩越高,图像的压缩感知重构效果越好.随着高通滤波器消失矩的增加,重构图像的效果改善程度减缓,计算复杂性增加. An image reconstruction is realized by using stagewise orthogonal matching pursuit,B-Spline biorthogonal wavelet for image sparse representation and low sampling frequencies in high frequency subbands for compressed sensing sampling.The experiment results indicate that the better performance on image reconstruction can be achieved.Under the same condition of low-pass filter on vanishing moment,the higher the high-pass filter on vanishing moment is,the better the performance on image reconstruction based on compressed sensing is.Meanwhile,with the increasing of high-pass filter on vanishing moment,the improvement of reconstruction will be slower and the computing complexity will be increased.
出处 《北华大学学报(自然科学版)》 CAS 2012年第6期722-725,共4页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金项目(61072111 60672156) 吉林省科技发展计划项目(20100503 20110360)
关键词 压缩感知 B样条双正交小波 分段正交匹配追踪 compressed sensing B-Spline biorthogonal wavelet stagewise orthogonal matching pursuit
  • 相关文献

参考文献14

  • 1Donoho D. Compressed Sensing [ J ]. IEEE Transactions on Information Theory ,2006,52 (4) :1289-1306.
  • 2Candbs E, Romberg J, Tao T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [ J ]. IEEE Transactions on Information Theory,2006,52 ( 2 ) :489-509.
  • 3Romberg J. Imaging via Compressive Sampling[ J ]. IEEE Signal Processing Magazine ,2008,25 (2) :14-20.
  • 4Duarte M F, Davenport M A, Takhar D, et al. Single-Pixel Imaging via Compressive Sampling [ J ]. IEEE Signal Processing Magazine,2008,25 ( 2 ) : 83-91.
  • 5Baraniuk R, Steeghs P. Compressive Radar Imaging [ C ]//Proceedings of the Radar Conference. Washington D. C. USA : IEEE, 2007 : 128-133.
  • 6Bhattacharya S,Blumensath T, Mulagrew B, et al. Fast Encoding of Synthetic Aperture Radar Raw Data Using Compressed Sensing [ C ]//Proceedings of Statistical Signal Processing. Washington D. C. , USA : IEEE, 2007:448-452.
  • 7Lustig M, Donoho D L, Pauly J M. Sparse MRI : The Application of Compressed Sensing for Rapid MR Imaging [ J ]. Magnetic Resonance in Medicine, 2007,58 ( 6 ) : 1182-1195.
  • 8Hu S, Lustig M, Chen A P,et al. Compressed Sensing for Resolution Enhancement of Hyperpolarized 13C Fly back 3D-MRSI [ J ]. Journal of Magnetic Resonance,2008,192 ( 2 ) :258-264.
  • 9Canes E J, Tao T. Decoding by Linear Programming [J]. IEEE Transaction on Information Theory,2005,51 ( 12 ) :4203-4215.
  • 10E Candes, J Romberg. Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions [ J ]. Found Comput Math, 2006,6 ( 2 ) : 227-254.

同被引文献19

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部