期刊文献+

基于灰度纹理信息的图像压缩感知编码与重构 被引量:3

Coding and Reconstruction of Image Compressed Sensing Based on Gray-scale Texture Information
下载PDF
导出
摘要 引入了压缩感知(Compressed Sensing,CS)理论,在分析图像DCT系数分布特性的基础上,提出了一种基于灰度纹理信息的压缩采样方法。该方法通过提取图像分块离散余弦变换交流系数的能量,进而对用于对测量过程进行加权修正,充分利用代表图像细节纹理信息的交流分量系数,基于图像轮廓纹理细节信息来分配测量维数,最终实现对不同图像块有区别的压缩采样。比较同类研究结果表明,提出的采样方法在有效减少测量维数或提高重构图像的峰值信噪比和主观视觉效果,以及在降低计算复杂度方面均有更好的表现。 It introduced the CS .(Compressed Sensing ) theory and proposed a novel gray-scale-texture compressive sampling method based on DCT coefficients distribution characteristics for image signals. This method extracts the energy of DCT alternating current coeffi- cient in image block to use for weighted correction in measurement process, makes full use of alternating current comporient coefficient of representing image detail texture information to allocate the measuring dimension based on image contour texture detail information, and ultimately realizes the distinguishing compression sampling for different image blocks. Comparison results with the similar work demon- strate that the proposed compressive sampling method could not only efficiently reduce the computational complexity, but also considera- bly decrease measurement rate and/or enhance the recovery image quality in both PSNR and subjective visual quality.
出处 《计算机技术与发展》 2013年第1期47-50,共4页 Computer Technology and Development
基金 国家自然科学基金资助项目(60972081) 湖北自然科学基金(2009CDA139 2010CDZ022)
关键词 压缩感知 DCT稀疏投影 交流分量 灰度纹理信息 compressive sensing DCT sparse decomposition AC coefficients gray-scale texture information
  • 相关文献

参考文献4

二级参考文献157

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2练秋生,孔令富.非抽样轮廓波变换构造及其在图像去噪中的应用[J].仪器仪表学报,2006,27(4):331-335. 被引量:11
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.

共引文献860

同被引文献20

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部