期刊文献+

考试数据分析及孤立点检测的谱聚类方法 被引量:3

Spectral Clustering Method for Exam Data Analysis and Outlier Detection
下载PDF
导出
摘要 孤立点(outlier)又称离群点,为位于远离与之相应的随机变量平均值的点。针对考试数据分析和孤立点检测问题,给出了答卷数据的谱聚类算法。利用答卷数据的谱聚类算法对所有考生的答卷数据进行聚类后,根据答卷数据的谱聚类算法中引入的距离矩阵,以每一位被试的答卷数据为参照,构成一个分类图,从而构建一个分类图簇。谱聚类算法在分析考试数据和检测孤立点方面具有明显的优势。实验表明,利用答卷数据的谱聚类算法对考试答卷结果进行聚类和分析,可以从中挖掘出更多有价值的信息。 An outlier is defined as a point that lies very far from the mean of the corresponding random variable. For the problem of exam data analysis and outlier detection, give the algorithm of spectral clustering on exam data analysis. After clustering of all the answers of people who take the exam, by using spectral clustering algorithm of examination scripts, according to the introduction of the distance ma- trix in spectral clustering algorithm, each people who takes the exam can be treated as a reference, to constitute a classification chart, thus build a cluster of classification chart. The algorithm of spectral ,clustering has obvious advantages in the analysis of exam data and outlier detection. Experiments show that clustering and analysing the results of exam answers by using of spectral clustering ,can dig out the more valuable information.
作者 贾志先
出处 《计算机技术与发展》 2013年第1期103-106,共4页 Computer Technology and Development
基金 全国教育科学规划项目(FFB108172) 新疆自治区高校科研计划重点项目(XJEDU2010I49)
关键词 谱聚类 特征值 特征向量 孤立点检测 spectral clustering eigenvalue eigenvector outlier detection
  • 相关文献

参考文献12

二级参考文献131

  • 1陆声链,林士敏.基于距离的孤立点检测研究[J].计算机工程与应用,2004,40(33):73-75. 被引量:44
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3谷峪,于戈,张天成.RFID复杂事件处理技术[J].计算机科学与探索,2007,1(3):255-267. 被引量:54
  • 4李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 5Tan P N, Steinbach M, Kumar V. Introduction to Data Mining. Toronto, Canada: Addison-Wesley Longman, 2005.
  • 6Strehl A, Ghosh J. Cluster Ensembles--A Knowledge Reuse Framework for Combining Partitionings// Proc of the 11 th Conference on Artificial Intelligence. Edmonton, Canada, 2002 : 93 - 98.
  • 7Fred A L, Jain A K. Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans on Pattern Analysis and Machine Intelligence, 2005, 27 (6) : 835 - 850.
  • 8Fern X Z, Brodley C E. Solving Cluster Ensemble Problems by Bipartite Graph Partitioning// Proc of the 20th International Conference on Machine Learning. Banff, Canada, 2004:36 -43.
  • 9Topchy A, Jain A K, Punch W. A Mixture Model for Clustering Ensembles// Proc of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA, 2004:379 -390.
  • 10Ayad H, Basir O A, Kamel M. A Probabilistic Model Using Information Theoretic Measures for Cluster Ensembles//Proc of the 5th International Workshop on Multiple Classifier Systems. Cagliari, Italy, 2004:144-153.

共引文献1323

同被引文献24

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部