期刊文献+

Effect of Sn-doping on the structural,electrical and magnetic properties of(In_(0.95-x)Sn_xFe_(0.05))_2O_3 films 被引量:2

Effect of Sn-doping on the structural,electrical and magnetic properties of(In_(0.95-x)Sn_xFe_(0.05))_2O_3 films
原文传递
导出
摘要 Room-temperature ferromagnetism was observed in (In0.95-xSnxFe0.05)203 (x = 0-0.09) films deposited by pulsed laser deposition. XRD results give a direct proof that both Sn and Fe ions have been incorporated into the In2O3 lattice. The carrier concentration in the films is obviously increased by the Sn-doping, while the ferromagnetic properties are rarely changed. We think that in our Fe-doped In2O3 films, the oxygen vacancy-related bound magnetic polaron model, rather than the carrier-mediated RKKY coupling, is the main mechanism for the observed ferromagnetism. Room-temperature ferromagnetism was observed in (In0.95-xSnxFe0.05)203 (x = 0-0.09) films deposited by pulsed laser deposition. XRD results give a direct proof that both Sn and Fe ions have been incorporated into the In2O3 lattice. The carrier concentration in the films is obviously increased by the Sn-doping, while the ferromagnetic properties are rarely changed. We think that in our Fe-doped In2O3 films, the oxygen vacancy-related bound magnetic polaron model, rather than the carrier-mediated RKKY coupling, is the main mechanism for the observed ferromagnetism.
出处 《Journal of Semiconductors》 EI CAS CSCD 2013年第2期15-18,共4页 半导体学报(英文版)
基金 Project supported by the National Natural Science Foundation of China(No.11004149) the Seed Foundation of Tianiin University
关键词 pulsed laser deposition room-temperature ferromagnetism (In0.95-xSnxFe0.05)2O3 films carrier concentration bound magnetic polaron model pulsed laser deposition room-temperature ferromagnetism (In0.95-xSnxFe0.05)2O3 films carrier concentration bound magnetic polaron model
  • 相关文献

参考文献1

二级参考文献19

  • 1Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1.
  • 2Vossen J L 1977 Phys. Thin Film8 9 1.
  • 3Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Osorio Guillen J M, Johansson B and Gehring G A 2003 Nature Mater. 2 673.
  • 4Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854.
  • 5Ogale S B, Choudhavy R J, Buban J P, Lofland S E, Shindel S R, Kale S N, Kulkarni V N, Higgins J, Lanci C, Simpson J R, Browning N D, Das Sarma S, Drew H D, Greene R L and Venkatesan T 2003 Phys. Rev. Lett. 91 77205.
  • 6Philip J, Punnoose A, Kim B I, Reddy K M, Layne S, Holmes J O, Satpati B, Leclair P R, Santos T S and Moodera J S 2006 Nature Mater. 5 298.
  • 7Philip J, Theodoropoulou N, Berera G, Moodera J S and Satpati B 2004 Appl. Phys. Lett. 85 777.
  • 8Hong N H, Sakai J, Huong N T and Brize V 2005 Appl. Phys. Lett. 87 102505.
  • 9He J, Xu S, Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D, Dionne G F and Takeuchi I 2005 Appl. Phys. Lett. 86 052503.
  • 10Yoo Y K, Xue Q, Lee H C, Cheng S, Xiang X D, Dionne G F, Xu S, He J, Chu Y S, Preite S D, Lofland S E and Takeuchi I 2005 Appl. Phys. Lett. 86 042506.

同被引文献14

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部