期刊文献+

含水层构造对抽灌水温变特性的影响 被引量:3

Effect of aquifer structure on water temperature evolution in field of pumping and injecting wells
下载PDF
导出
摘要 针对不同含水层构造抽灌井群地下温度场的演化规律进行实验研究,分析相同井群抽灌量和几何参数条件下,不同含水层介质的热湿运移规律及热交互影响。研究表明:含水层岩性的变化对井场热贯通时间的影响较大,对后期的热交互影响相对略小。粒块体结构较大的砂砾含水层,其井场热贯通时间明显缩短。含水层介质的分布状态对热交互影响较大,对热贯通时间的影响有大有小。对于均匀分布含水介质,各井抽灌量应尽量均匀分配,推迟热贯通发生和减弱热交互影响。对于非均匀分布含水介质,采用各井配置流量调整,可改善热湿均衡性,避免非均匀含水介质的不利影响。 The evolution of underground temperature field of the pumping and injecting wells area with different aquifer structures was investigated experimentally. The transport behavior of the thermalwet of different aquifer media and their thermal interaction were analyzed under same total water flow rate and well geometric parameters. The experimental results showed that the effect of aquifer rockyness variation on the occurrence time of the thermal breakthrough is significant while relatively small on the later thermal interaction. For the aquifer with larger size of gravel, the thermal breakthrough advances significantly. The effect of aquifer distribution on the thermal breakthrough is less than thermal interaction. For the homogeneous aquifer medium, the water flow rate of each well should be evenly distributed to postpone the thermal breakthrough and weaker the thermal interaction. For the inhomogeneous aquifer medium, each well should have individual flow adjustment to improve the thermal-wet balance and avoid the adverse influence of aquifer in homogeneity.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第1期56-61,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(51076059)
关键词 热能工程 地下水源热泵 含水层构造 温变特性 抽灌井群 thermal energy engineering underground source heat pump aquifer structure temperature evolution pumping and injecting wells field
  • 相关文献

参考文献8

  • 1Stefano L R, Massimo V C. Open loop groundwater heat pumps development for large buildings: a case study[J]. Geothermics. 2009. 38(3): 335-345.
  • 2Niyazi A, Celalcttins, Orhan G. Groundwater contamination mechanism in a geothermal field: a case study of Balcova, Turkey[J]. Journal of Contaminant Hydrology, 2009, 103 (1-2): 13-28.
  • 3崔淑琴,高青,李明,江彦.地源热泵非连续过程地下传热特性及其控制[J].吉林大学学报(工学版),2006,36(2):172-176. 被引量:10
  • 4Bodvarsson G S, Tsang C F. Injection and thermal breakthrough in fractured geothermal reservoirs[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1983. 20(3): 1031-1048.
  • 5Tsang C F, Buscheck T, Douhty C. Aquifer thermal energy storage: a numerical simulation of auburn university field experiments[J]. Water Resources Research, 1981, 17(1): 647-658.
  • 6SykesJ F, Lantz R B, Pahwa S B, et al. Numerical simulation of thermal energy storage experiment conducted by auburn university[J]. Ground Water,1982, 20(5): 569-576.
  • 7何柏荣,孙澈,田春松.多井系统地热储温度场的数值模拟[J].计算物理,1986,3(1):69-76.
  • 8周彦章,陈耿.含水介质地下水热量运移研究综述[J].黑龙江水专学报,2008,35(2):123-128. 被引量:11

二级参考文献38

共引文献19

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部