摘要
针对传统(α,k)-匿名模型不能满足敏感属性值之间不同隐私保护程度个性化需求的问题,引入敏感属性值个性隐私敏感因子和个性隐私保护需求度的概念,进而形式化地定义了个性化(α,k)-匿名模型;同时,还提出了一种基于熵分类的个性化隐私匿名方法来实现个性化(α,k)-匿名模型。实验表明:该方法不仅能获得与现有(α,k)-匿名算法近似的信息损失度和时间代价,同时也满足了个性化服务的需求,获得更合理的隐私保护。
To solve the defects of the traditional (α,κ)-anonymity model has the defect that it does not satisfy the personalized requirement of different privacy preserving degree for different sensitive attributed values. To overcome this defect, the concepts of personalized privacy sensitive factor and personalized privacy preserving requirement degrees for each sensitive attribute value are introduced. Then the personalized (α,κ)-anonymity model is defined formally. Meanwhile, an entropy-based classification approach for personalized privacy anonymity is presented to solve this personalized (α,κ)-anonymity model. Experiment results show that the proposed method not only produces similar information loss and time cost to the existing (α,κ)-anonymity algorithm, but also meets the requirements of personalized service and achieves more reasonable privacy preservation.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2013年第1期179-185,共7页
Journal of Jilin University:Engineering and Technology Edition
基金
国家自然科学基金项目(61073041
61073043
61100008
61172167)
黑龙江省自然科学基金项目(F200901
F201023)
哈尔滨市优秀学科带头人基金项目(2010RFXXG002
2011RFXXG015)
中央高校基本科研业务费专项项目(HEUCF061002)
关键词
计算机应用
隐私保护
(α
k)-匿名
熵分类
个性化
computer application
privacy preserving
(α,κ)-anonymity
entropy classification personalized