期刊文献+

任意球面元件的超高反射率测量方法 被引量:1

Super-high reflectivity measurement of arbitrary spheric optical element
下载PDF
导出
摘要 为了实现任意球面元件的超高反射率测量,提出直腔和折叠腔两种光腔结构,以实现0°,10°,15°和30°等不同角度下球面元件的超高反射率测量。详细分析了这两种测量方式,根据光束传输变换公式,推导了任意球面元件在测量中引入的衰荡光腔物理腔长的变化,得到了实验测量中腔长调节指导。并根据光腔衰荡法原理,推导了球面元件在超高反射率测量中的通用数学表达式,对测量公式进行了讨论,分析结果扩展了光腔衰荡法在元件超高反射率测量的使用范围。 In order to measure super-high reflectivity of any sphere optical element at different angles, such as 0°, 10°, 15°, 30° and so on, two optical resonator structures are put forward: one is straight-cavity, and the other is folded-cavity. Physical length of the ring-down cavity is defined based on the concept of light path. These two kinds of measurement methods are ana- lyzed in detail. When spherical surface is put in the ring-down cavity, it brings length misalignment of the ring-down cavity. This varied length is derived based on the beam transmission and transformation law, which can be used as length adjustment guidance of the ring-down cavity for reflectivity measurement. In addition, according to reflectivity measuring principle of cavity ring- down, mathematical expressions of reflectivity measuring for spherical components are deduced at different angles, which are dis- cussed separately. The results expand the super-high reflectivity measurement scope of optical elements for the cavity ring-down method.
出处 《强激光与粒子束》 EI CAS CSCD 北大核心 2013年第2期287-291,共5页 High Power Laser and Particle Beams
基金 国军标课题(GJB-10ZW015)
关键词 光学测量 反射率 光腔衰荡 球面元件 物理腔长 optical measurement reflectivity cavity ring-down spheric optical element physical cavity length
  • 相关文献

参考文献16

二级参考文献126

共引文献94

同被引文献23

  • 1BerdenG,PeetersR,MeijerG.Cavityring-downspectroscopy:experimentalschemesandapplications[J].InternationalReviewsinPhysicalChemistry,2000,19(4):565-607.
  • 2Motto-rosV,DurandM,MorvilleJ.Extensivecharacterizationoftheopticalfeedbackcavityenhancedabsorptionspectroscopy(OF-CEAS)technique:ring-downtimecalibrationoftheabsorptionscale[J].AppliedPhysicsB:LasersandOptics,2008,91:203-211.
  • 3O’KeefeA,DeaconDAG.Cavityring-downopticalspectrometerforabsorptionmeasurementsusingpulsedlasersources[J].ReviewofScientificInstrumments,1988,59:2544-2554.
  • 4EnglenR,HeldenG,BerdenG,etal.Phaseshiftcavityringdownabsorptionspectroscopy[J].ChemicalPhysicsLetters,1996,262(1/2):105-109.
  • 5RomaniniD,KachanovAA,SadeghiN,etal.CWcavityringdownspectroscopy[J].ChemicalPhysicsLetters,1997,264(3/4):316-322.
  • 6EngelnR,BerdenG,PeetersR,etal.cavityenhancedabsorptionandcavityenhancedmagneticrotationspectroscopy[J].ReviewofScientificInstrumments,1998,69:3763-3769.
  • 7LevensonM D,PaldusBA,SpenceTG,etal.Opticalheterodynedetectionincavityring-downspectroscopy[J].ChemicalPhysicsLetters,1998,290:335-340.
  • 8MichaelJT,KevinDM,JonesRJ,etal.Broadbandcavityringdownspectroscopyforsensitiveandrapidmoleculardetection[J].Science,2006,311(5767):1595-1599.
  • 9EngelnR,MeijerGA.Fouriertransformcavityringdownspectrometer[J].ReviewofScientificInstrumments,1996,67:2708-2713.
  • 10BerdenG,EngelnR.Cavityring-downspectroscopy:techniquesandapplications[M].UKChippenham Wiley-Blackwell,2009.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部