期刊文献+

斜齿轮时变接触线改进算法及螺旋角对接触线影响 被引量:7

The improved algorithm of time-varying contact line and influence on contact line with different helix angles
下载PDF
导出
摘要 针对Chinmaya Kar和A.R.Mohanty采用的计算时变接触线算法存在计算条件的问题,根据啮合原理推导出通用公式,该公式突破了接触线长度计算受啮合面形状以及同时啮合的接触线条数限制,扩大了数值计算接触线的应用范围,并与国家标准计算值对比,误差皆在5%以内,该结果为齿轮的参数设计以及后续的齿面摩擦提供理论基础.利用该算法计算在改变螺旋角情况下斜齿轮在一个端面齿距内的时变接触线并分析其变化的规律,研究结果表明:初始时刻当L1(啮合起始时刻接触线上端距离啮合区右端最短距离)和端面齿距相等,且L2(啮合起始时刻接触线上端距离啮合区左端最短距离)和L4(啮合起始时刻接触线下端距离啮合区右端最短距离)相等时,整个接触线没有波动,齿轮运行最平稳. Based on an algorithm proposed by Chinmaya Kar and A.R.Mohantya,which had computational condition for computation of time-varying contact line,this paper deduces a general formula based on the theory of engagement,which breaks the restrictions of the mating surface shape and the number of contact lines in engagement in the computation of the contact line.The given algorithm in this paper expands the application range of the numerical calculation of contact line,and controls the error within 5% comparing with the national standard value of computation.The research result provides a theoretical basis for design of gear parameters and the subsequent gear face friction.The given algorithm is used to compute the time-varying contact line of a helical gear within a transverse pitch by changing with different helix angles,and analyzing the changes law.The research results show,at the initial moment,there's no fluctuation of the whole contact line and the running is very stable when the length of L1(the shortest distance from the top of contact line to the right end surface of the mating area at the initial moment of mating) is equal to a transverse pitch,and L2(the shortest distance from the top of contact line to the left end surface of the mating area at the initial moment of mating) equals L4(the shortest distance from the bottom of contact line to the right end surface of the mating area at the initial moment of mating).
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2012年第12期1529-1533,共5页 Journal of Harbin Engineering University
基金 国家973计划资助项目(2013CB632305)
关键词 斜齿轮 时变接触线 数值算法 螺旋角 端面齿距 helical gear time-varying contact line numerical algorithm helix angle transverse pitch
  • 相关文献

参考文献12

  • 1PAREY A TONDON N. Spur gear dynamic models inclu- ding defects: a review [ J ]. The Shock and Vibration Di- gest, 2003, 35 (6) : 465-478.
  • 2WANG J, LI R. PENG X. Survey of non-linear vibration of gear transmission systems [ J]. Applied Mechanics Review, 2003, 56 (3): 309-329.
  • 3VELEX P, SAINSOT P. An analytical study of tooth friction excitations in errorless spur and helical gears [ J]. Mecha- nism and Machine Theory, 2002, 37(7) : 641-658.
  • 4MAATAR M, VELEX P. An analytical expression for the time-varying contact length in perfect cylindrical gears: some possible applications in gear dynamics [ J ]. Journal of Machine Design, 1996, 118(4) : 586-589.
  • 5BORNER J, HOUSER D R, Friction and bending moments as gear noise excitations [ J ]. SAE Transaction, 1996,105 (6) :1669-1676.
  • 6VELEX P, CALIOUET V. Experimental and numerical in- vestigations on the influence of tooth friction in spur and helical gear dynamics [ J ]. Journal of Mechanical Design, 2000,122(4) :515-522.
  • 7LUNDVALL, STROMBERG N, KLARBRING A. A flexible multi-body approach for frictional contact in spur gears [ J]. Journal of Sound and Vibration, 2004,278 (3) :479-499.
  • 8VAISHYA M, SINGH R. Strategies for modeling friction in gear dynamics [ J ]. Journal of Mechanical Design, 2003, 125(2) :383-393.
  • 9KUBO A, KIYONO S. Vibration excitation of cylindrical in- volute gears due to tooth form errors [ J ]. Bulletin of JSME , 1980. 23183) : 1536-1543.
  • 10SMITH J D. Gears and their vibration [ D ]. New York: Marcel Dekker, 1983:102-156.

同被引文献31

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部