期刊文献+

基于免疫的网络动态实时异常检测模型

Dynamic and real-time network anomaly detection model——inspired by immune
下载PDF
导出
摘要 网络异常检测已成为入侵检测系统发展的重要方向.现有异常检测模型对检测模式描述为一种静态方式,缺乏良好的自适应性和协同性,检测率低,难以满足高速网络环境下实时检测的需求.针对此,借鉴人体免疫系统优异的自学习自适应机制,提出了一种新的基于免疫的网络动态实时异常检测模型NAIM.该模型通过对检测模式进行动态描述,结合抗体细胞动态克隆原理,探讨种痘及疫苗分发机制,实现检测模式随真实网络环境同步演化,从而提高网络异常检测的准确性和及时性. The network anomaly detection has become the promising direction of intrusion detection system. The existing anomaly detection models depict the detection pattern with a static way, which lack good adaptability and interoperability with low detection rate, so it is difficult to implement the real-time detection under the high- speed network environment. Our research uses the excellent mechanism of Self-learning and adaptability of the human immune system, and a novel real-time immune-based anomaly detection model(NAIM) is proposed. The model dynamically depicts detection model, combining the antibody's clone theory and disscussing the vaccina- tion and bacterin distribution mechanism, which achieves the detection mode's synchronous evolvement with the real network enviroment, thus improves the network anomaly detection's veracity and timeliness.
出处 《广州大学学报(自然科学版)》 CAS 2012年第6期73-77,共5页 Journal of Guangzhou University:Natural Science Edition
基金 国家自然科学基金项目(61100150) 中央高校基本科研业务费项目(ZYGX2011J069) 广东省自然科学基金项目(S2011040004528 S2011040003843)资助
关键词 人工免疫 异常检测 入侵检测 artificial immune anomaly detection intrusion detection
  • 相关文献

参考文献3

二级参考文献29

  • 1李昆仑,黄厚宽,田盛丰,刘振鹏,刘志强.模糊多类支持向量机及其在入侵检测中的应用[J].计算机学报,2005,28(2):274-280. 被引量:49
  • 2肖云,韩崇昭,郑庆华,王清.一种基于多分类支持向量机的网络入侵检测方法[J].西安交通大学学报,2005,39(6):562-565. 被引量:13
  • 3高能,冯登国,向继.一种基于数据挖掘的拒绝服务攻击检测技术[J].计算机学报,2006,29(6):944-951. 被引量:45
  • 4ANDERSON J P.Computer Security Threat Monitoring and Surveillance[R].James P Anderson Co,Fort Washington,Pennsylvania,1980.
  • 5PORTNOY L,ESKIN E,STOLFO S J.Intrusion detection with unlabeled data using clustering[A].Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA2001)[C].Philadelphia,2001.5-8.
  • 6JIANG S Y,SONG X,WANG H,et al.A clustering-based method for unsupervised intrusion detections[J].Pattern Recognition Letters,2006,27(7):802-810.
  • 7ESKIN E,ARNOLD A,PRERAU M,et al.A geometric framework for unsupervised anomaly detection:detecting intrusions in unlabeled data[A].Applications of Data Mining in Computer Security[C].Boston,2002.78-99.
  • 8OLDMEADOW J,RAVINUTALA S,LECKIE C.Adaptive clustering for network intrusion detection[A].Advances in Knowledge Discovery and Data Mining[C].Heidelberg,2004.255-259.
  • 9LEUNG K,LECKIE C.Unsupervised anomaly detection in network intrusion detection using clusters[A].Proceedings of the Twenty-Eighth Australasian Computer Science Conference[C].Sydney,2005.333-342.
  • 10ZANERO S,SAVARESI S M.Unsupervised learning techniques for an intrusion detection system[A].Proceedings of the 2004 ACM Symposium on Applied Computing[C].New York,2004.412-419.

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部