摘要
网络异常检测已成为入侵检测系统发展的重要方向.现有异常检测模型对检测模式描述为一种静态方式,缺乏良好的自适应性和协同性,检测率低,难以满足高速网络环境下实时检测的需求.针对此,借鉴人体免疫系统优异的自学习自适应机制,提出了一种新的基于免疫的网络动态实时异常检测模型NAIM.该模型通过对检测模式进行动态描述,结合抗体细胞动态克隆原理,探讨种痘及疫苗分发机制,实现检测模式随真实网络环境同步演化,从而提高网络异常检测的准确性和及时性.
The network anomaly detection has become the promising direction of intrusion detection system. The existing anomaly detection models depict the detection pattern with a static way, which lack good adaptability and interoperability with low detection rate, so it is difficult to implement the real-time detection under the high- speed network environment. Our research uses the excellent mechanism of Self-learning and adaptability of the human immune system, and a novel real-time immune-based anomaly detection model(NAIM) is proposed. The model dynamically depicts detection model, combining the antibody's clone theory and disscussing the vaccina- tion and bacterin distribution mechanism, which achieves the detection mode's synchronous evolvement with the real network enviroment, thus improves the network anomaly detection's veracity and timeliness.
出处
《广州大学学报(自然科学版)》
CAS
2012年第6期73-77,共5页
Journal of Guangzhou University:Natural Science Edition
基金
国家自然科学基金项目(61100150)
中央高校基本科研业务费项目(ZYGX2011J069)
广东省自然科学基金项目(S2011040004528
S2011040003843)资助
关键词
人工免疫
异常检测
入侵检测
artificial immune
anomaly detection
intrusion detection