期刊文献+

Integration of Lab model and EHOG for human appearance matching across disjoint camera views 被引量:2

结合Lab模型与EHOG特征的摄像机离散视域人物外表匹配(英文)
下载PDF
导出
摘要 The integration of the Lab model with the extended histogram of oriented gradients (EHOG) is proposed to improve the accuracy of human appearance matching across disjoint camera views under perturbations such as illumination changes and different viewing angles. For the Lab model that describes the global information of observations, a sorted nearest neighbor clustering method is proposed for color clustering and then a partitioned color matching method is used to calculate the color similarity between observations. The Bhattacharya distance is employed for the textural similarity calculation of the EHOG which describes the local information. The global information, which is robust to different viewing angles and scale changes, describes the observations well. Meanwhile, the use of local information, which is robust to illumination changes, can strengthen the discriminative ability of the method. The integration of global and local information improves the accuracy and robustness of the proposed matching approach. Experiments are carried out indoors, and the results show a high matching accuracy of the proposed method. 针对摄像头离散区域存在的光照变化、视角变化等干扰,提出一种结合Lab模型以及扩展梯度方向直方图特征的方法来改善人物外表匹配的准确率.对于描述目标全局信息的Lab模型,提出一种排序最近邻聚类算法进行颜色聚类,然后使用分块颜色匹配算法计算观察值之间的颜色相似度.对于描述目标局部信息的扩展梯度方向直方图特征,使用巴氏距离计算2个观察值之间的相似度.全局信息可以很好地描述目标外形,并且能够适应摄像头视角的变化以及目标尺度上的改变.局部信息对光照变化具有更强的鲁棒性,它能够增强模型的辨别能力.全局信息和局部信息的结合保证了所提出算法的精确度和鲁棒性.室内实验结果显示所提出的算法具有较高的正确匹配率.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2012年第4期422-427,共6页 东南大学学报(英文版)
基金 The National Natural Science Foundation of China(No.60972001) the Science and Technology Plan of Suzhou City(No.SG201076)
关键词 human appearance matching Lab model extended histogram of oriented gradients (EHOG) disjoint camera views 人物外表匹配 Lab模型 扩展梯度方向直方图 摄像机离散视域
  • 相关文献

参考文献1

二级参考文献15

  • 1Kim S, Park S, Kim M. Central object extraction for ob- ject-based image retrieval [ C ]. Urbana-Champaign, IL, USA: Proceedings of the 2nd International Conference on Image and Video Retrieval, 2003:39-49.
  • 2Hua G, Liu Z, Zhang Z, et al. Iterative local-global ener- gy minimization for automatic extract object of interest [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2006, 28 ( 10 ) : 1701 - 1706.
  • 3Lowe D. Distinctive image features from scale-invariant key- points [ J ]. International Journal of Computer Vision, 2004, 60(2) : 91-110.
  • 4Dalai N, Triggs B. Histograms of oriented gradients for hu- man detection[C]. San Diego, CA, United states: Pro- ceedings of IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition, 2005:886-893.
  • 5Shashua A, Gdalyahu Y, Hayun G. Pedestrian detection for driving assistance systems: Single-frame classification and system level performance [ C ]. Parma, Italy : Proceedings of IEEE Intelligent Vehicles Symposium, 2004 : 1 - 6.
  • 6Zhu Q, Avidan S, Yeh M C, et al. Fast human detection using a cascade of histograms of oriented gradients [ C ]. New York, NY, United states : Proceedings of IEEE Com- puter Society Conference on Computer Vision and Pattern Recognition, 2006, 2:1491-1498.
  • 7Opelt A, Pinz A. Fusing shape and appearance informa- tion for object category detection [ C ]. Edinburgh, UK : Proceedings of British Machine Vision Conference, 2006 : 117-126.
  • 8Felzenszwalb, P., et al., Object Detection with Discrimi- natively Trained Part Based Models. IEEE Transactions on Pattern Analysis And Machine Intelligence, 2010, 32 (9) :1627-1645.
  • 9Bai, X., et al. Active Skeleton for Non-rigid Object Detec- tion. in International Conference on Computer Vision. 2009. Kyoto, Japan.
  • 10Shotton, J., A. Blake, and R. Cipolla, Multi-Scale Cate- gorical Object Recognition Using Contour Fragments. IEEE Transactions on Pattern Analysis And Machine Intel- ligence, 2008.

共引文献7

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部