期刊文献+

基于数据挖掘的电信故障分类及回归预测 被引量:2

The Classification and Regression Prediction of Telecom Fault Based on Data Mining
下载PDF
导出
摘要 基于数据挖掘技术,针对电信故障海量数据特点,合理选择属性值和标签值,运用交叉验证、网格划分、遗传算法和粒子群算法进行参数寻优,运用支持向量机SVM理论,建立电信故障分类模型和预测模型。通过仿真分析,并且与电信故障实际数据对比,表明该分类模型和预测模型的精度高,误差小,为今后控制电信故障,改善网络运行质量提供理论依据和数据支持。 Based on data mining through the detailed analysis of telecom fault massive data features,reasonably choosing data value and label value,using cross validation,grid,GA and PSO to parameter optimization,along with the theory of SVM to establish the telecom fault classification model and prediction model.Through comparative analysis of prediction data and actual measurement data,it shows that this classification model and prediction model has a high level in telecom fault forecasting with low errors.All of these can provide data and theoretical support for telecom fault controlling and improving the quality of network in future.
作者 王洋 张延华
出处 《中国电子科学研究院学报》 2012年第6期617-622,共6页 Journal of China Academy of Electronics and Information Technology
关键词 数据挖掘 SVC SVR 电信故障预测 data mining SVC SVR telecom fault prediction
  • 相关文献

参考文献8

  • 1谢邦昌.数据挖掘Clementine应用实务[M]北京:机械工业出版社,2008.
  • 2SHEN BIN,LIU YUAN,WANG XIAOYI. Research on Data Mining Models for the Internet of Things[A].2010.127-132.
  • 3王锐,马德涛,陈晨.数据挖掘技术及其应用现状探析[J].电脑应用技术,2007(2):20-23. 被引量:23
  • 4邹柏贤,刘强.基于ARMA模型的网络流量预测[J].计算机研究与发展,2002,39(12):1645-1652. 被引量:107
  • 5HONGWEI CHEN;XIN ZHOU;FANGPING YOU.Study of Double-Characterististics SVM Method for P2P Traffic Identification[A]湖北武汉,2010202-205.
  • 6HE DAKUO,FENG JIE,CHANG HONGRUI. SVM Modeling on Slow Time Varying System and Online Correction Studying[A].2011.4210-4215.
  • 7曹建芳,王鸿斌.基于支持向量机的中文娱乐新闻词语的识别[J].计算机应用与软件,2011,28(2):249-252. 被引量:2
  • 8LIN C J. Formulations of Support Vector Machine:a Note From an Optimization Point of View[J].Neural Computation,2001,(02):307-317.doi:10.1162/089976601300014547.

二级参考文献15

  • 1刘良斌,王小平.基于支持向量机和输出编码的文本分类器研究[J].计算机应用,2004,24(8):32-34. 被引量:8
  • 2肖云,韩崇昭.基于支持向量机的降低入侵检测误报警方法[J].计算机工程,2006,32(17):25-27. 被引量:7
  • 3鲁明羽.Bayes文本分类器的改进方法研究[J].计算机工程,2006,32(17):63-65. 被引量:11
  • 4王叔子.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992..
  • 5Vlachos A.Active learning with support vector machines[D].MS:University ofEdinburgh,2004:12-14.
  • 6Hsu C W,Lin C J.A comparison of methods for multi-class support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):415-425.
  • 7Chapelle O,Vapnik V N,Bousquet O,et al.Choosing multiple parameters for support vector machines[J].Machine Learning,2002,46(1):131-159.
  • 8Lewis D D,Gale W A.A sequential algorithm for training text classifiers[C]//Prec of the 17th ACM International Conference on Research and Development in Information Retrieval,1994:3-12.
  • 9Platt J.Probabilistic outputs for support vector machines and comparison to regularized likelihood methods[C]//Advances in Large Margin Classifiers,2000:61-74.
  • 10陈淋艳 封筠.支持向量机多值分类器的研究.微型电脑应用,2006,22(7):22-24.

共引文献129

同被引文献37

  • 1张鹏.脉冲雷达的相参测量[J].现代雷达,2008,30(1):97-99. 被引量:3
  • 2张葛祥,胡来招,金炜东.雷达辐射源信号脉内特征分析[J].红外与毫米波学报,2004,23(6):477-480. 被引量:19
  • 3ZHANGGexiang,JINWeidong,HULaizhao.Resemblance Coefficient Based Intrapulse Feature Extraction Approach for Radar Emitter Signals[J].Chinese Journal of Electronics,2005,14(2):337-341. 被引量:43
  • 4韩家炜,坎伯.数据挖掘:概念与技术[J].北京:机械工业出版社,2001:232-233.
  • 5MORAITAKIS I,FARGUES M P.Feature Extraction of Intra-pulse Modulated Signals Using Time-frequency Analysis[C]//MILCOM 2000.21st Century Military Communications Conference Proceedings,2000.
  • 6UMAPATHY K,KRISHNAN S,JIMAA S.Audio Signal Classification Uusing Time-frequency Parameters[C]//Multimedia and Expo,2002.ICME 02.Proceedings.2002IEEE International Conference on,2002.
  • 7孙鹏.雷达辐射源信号相参特征建模及提取技术研究[D].武汉:空军雷达学院,2011.
  • 8L C.Time-frequency Analysis:Theory and Applications[M].Upper Saddle River:Prentice Hall Press,1998.
  • 9Wolpert DH.The supervised learning no-free-lunch theorems[M].Soft Computing and Industry.Springer,2002:25-42.
  • 10Brazdil P,Gama Ja,o,Henery B.Characterizing the applicability of classification algorithms using meta-level learning[C].European Conference on Machine Learning,1994:83-102.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部