期刊文献+

基于Walsh函数系的椭圆球面波脉冲波形重构方法 被引量:4

A Reconstructing Method of PSWF Pulse Waveform using Walsh Functions
下载PDF
导出
摘要 目前PSWF的脉冲产生方法在硬件实现方面有着编程复杂,计算量大,资源消耗多等制约因素,因此亟需一种适合实时产生PSWF脉冲信号的方法。通过分析Walsh函数系的特点和产生原理,提出了一种基于Walsh函数系的PSWF脉冲波形重构方法。其中,Walsh系数可以通过已有的PSWF数值点与P编号的Walsh矩阵求解得出,再截取所需精度的Walsh系数参与重构PSWF脉冲波形,从而达到降低存储量的目的。由于Walsh码型中的±1与数字电路中的01有着天然对应的关系,重构时只需将Walsh系数相加减,从而降低计算量。仿真结果表明,利用Walsh函数系可以较好地重构PSWF脉冲波形,且算法简单,避免了乘法运算,降低了计算量和存储量,有利于工程实现。 The current realization methods of PSWF pulse in the hardware is constrained by complexity of programming,heavy large calculation,resource consumption,therefore a suitable real-time pulse signal generating method of PSWF is necessary.By analyzing the characteristics and principle of Walsh functions,this paper proposed a reconstruction method of PSWF pulse waveform based on Walsh functions,which can be solved by the existing PSWF data points and P-numbered Walsh matrix.Interception of the required accuracy of Walsh functions involved in the reconstruction of PSWF pulse waveform achieves the goal of reducing memory size.The Walsh codes ±1 have a natural corresponding relationship to 0,1 codes of digital circuits,thus the amount of computation could be reduced by addition and subtraction of the Walsh coefficients.The simulation results show that,according to the engineering requirements of accuracy,the use of Walsh functions could better reconstruct the PSWF pulse waveform.The algorithm,simplified by avoiding the multiplication,can reduce the amount of computation and storage requirement,and provides a easy way of engineering realization.
作者 牟健 王红星
出处 《中国电子科学研究院学报》 2012年第6期623-626,共4页 Journal of China Academy of Electronics and Information Technology
关键词 WALSH函数 椭圆球面波函数 存储量 计算量 平移复制 walsh functions prolate spherical wave functions(PSWF) memory size calculation quantity translation copy
  • 相关文献

参考文献12

二级参考文献52

  • 1陆音,朱洪波.基于近似扁长椭球波函数的超宽带脉冲设计[J].通信学报,2005,26(10):60-64. 被引量:20
  • 2曹祁生,梁德群.非正交多重调制的研究[J].电子学报,2006,34(1):19-23. 被引量:15
  • 3迟永钢,王芳.基于PSWF的超宽带通信系统最佳波形设计[J].南京邮电大学学报(自然科学版),2006,26(2):43-46. 被引量:10
  • 4徐玉滨,王芳,沙学军.UWB通信系统双正交PSWF脉冲波形设计[J].哈尔滨工业大学学报,2007,39(1):81-84. 被引量:18
  • 5Reed J H. An Introduction to Ultra Wideband Communication Systems[M]. New York, Prentice Hall PTR, 2005: 2-14,.
  • 6Khare K. Bandpass sampling and bandpass analogues of prolate spheroidal functions[J]. Signal Processing, 2006, (86): 1550-1558.
  • 7Parr B, Cho B, and Wallace K. A novel ultra-wideband pulse design algorithm[J]. IEEE Communication Letters, 2003, 7(5): 219-221.
  • 8Dilmaghani Reza S, Ghavami M, and Allen B, et al.. Novel UWB pulse shaping using prolate spheroidal wave functions[C]. 14th IEEE International Symposium on Personal, Indoor & Mobile Radio Communication Proceedings, 2003: 602-606.
  • 9Hamamura M and Hyuga J. Spectral efficiency of orthogonal set of truncated MC-CDMA signals using discrete prolate spheroidal sequences[C]. WCNC 2008 Proceedings in IEEE Communications Society. 2008: 980-984.
  • 10Jitsumatsu Y and Kohda T. Prolate spheroidal wave functions induce gaussian chip waveforms[C]. ISIT 2008, Toronto. 2008: 1363-1367.

共引文献61

同被引文献38

  • 1王红星,赵志勇,刘锡国,等.非正弦时域正交调制方法:中国,CN200810159238.3[P].2009-04-15.
  • 2SLEPIAN D,POLLAK H O.Prolate Spheroidal Wave Functions,Fourier Analysis,and Uncertainty-I[J].The BELL System Technical Journal,1961(1):43-63.
  • 3SLEPIAN D.Prolate Spheroidal Wave Functions,Fourier Analysis and Uncertainty-V[J].Bell System Tech Journal,1978,57(5):1371-1430.
  • 4CHAPARRO L F,SEJDIC E,CAN A,et al.Asynchronous Representation and Processing of Nonstationary Signals:a Time-Frequency Framework[J].IEEE Signal Processing Magazine,2013,30(6):42-52.
  • 5KAMATA T,OKUI K,FUKASAWA M,et al.Low-Power Zero-IF Full-segment ISDB-T CMOS Tuner with TenthOrder Baseband Filters[J].IEEE Transactions on Consumer Electronics,2011,57(2):403-410.
  • 6ZHONGJUN WANG,YAN XIN,MATHEW G,et al.Efficient Phase-Error Suppression for Multiband OFDM-based UWB Systems[J].IEEE Transactions on Vehicular Technology,2010,59(2):766-778.
  • 7YOUNGSUN HA,WONZOO CHUNG.Non-Data-Aided Phase Noise Suppression Scheme for CO-OFDM Systems[J].IEEE Photonics Technology Letters,2013,25(17):1703-1706.
  • 8HUSSIN S,PUNTSRI K,NOE R.Analysis of Partial Pilot Filling Phase Noise Compensation for CO-OFDM Systems[J].IEEE Photonics Technology Letters,2013,25(12):1099-1102.
  • 9QUNBI ZHUGE,MORSY-OSMAN M H,PLANT D V.Low Overhead Intra-Symbol Carrier Phase Recovery for Reduced-Guard-Interval CO-OFDM[J].Journal of Lightwave Technology,2013,31(8):1158-1169.
  • 10JOHN G P.数字通信[M].第4版.张力军,张宗橙,郑宝玉,等,译.北京,电子工业出版社,2003.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部