摘要
本文证明了方程x″+λ~2x+x(1+x^2)^(-1/3)+sinx=e(t)解的有界性,其中λ满足Diophantine条件,e(t)是光滑的2π周期函数.
In this paper, we are concerned with the boundedness of all solutions for the some semilinear Duffing equation x″ + λ2x + x(1 + x^2 ) -1/3 + cosx = e(t), where λ satisfies the Diophantine condition, e(t) is a smooth 2π-periodic function.
出处
《南京大学学报(数学半年刊)》
CAS
2012年第2期163-175,共13页
Journal of Nanjing University(Mathematical Biquarterly)
基金
Supported by the Fund of the Key Disciplines in the General Colleges and Universities of Xin Jiang Uygur Autonomous Region(Grant No2012ZDKK13)
关键词
哈密顿系统
典则变换
Moser扭转定理
Hamiltonian system, boundedness of solutions, canonical transformation, method of principle integral, Moser's small twist theorem