摘要
针对小样本环境下,具有自变量之间多重相关性特点的高炉炼铁工序能耗预测问题,从预测角度利用"舍一交叉"验证方法对偏最小二乘回归模型进行了改进,提出了应用改进型偏最小二乘回归建立预测模型的方法。以我国某钢铁厂高炉炼铁工序的能耗预测为例,说明了改进型偏最小二乘回归法与普通偏最小二乘回归法相比,预测误差平方和能够降低86.76%。
Facing to the energy-consumption forecast problem of blast furnace iron-making process with characteristics of fewer samples and independent variables with multiple correlations, this paper improved the partial least-squares regression model from the angle of prediction. A real steel factory' s blast furnace iron-making process is taken as an example to show that the sum of prediction error square of the improved partial least-squares regression can be reduced by 86.76% than that of partial least-squares regression.
出处
《计算机应用》
CSCD
北大核心
2012年第A02期51-53,共3页
journal of Computer Applications
基金
安徽省钢铁产业技术创新规划研究项目(09020203014)
关键词
多重相关性
偏最小二乘回归
高炉炼铁
能耗预测
预测精度
multiple correlation
partial least-squares regression
blast furnace iron-making
energy-consumption forecast
prediction accuracy