期刊文献+

基于改进粒子群算法的多阈值灰度图像分割 被引量:9

Multilevel thresholding gray-scale image segmentation based on improved particle swarm optimization
下载PDF
导出
摘要 针对粒子群协同学习优化算法和粒子群综合性学习优化算法中的粒子更新规则不灵活问题,提出了一种新的粒子群多阈值灰度图像分割算法。该算法中的粒子更新策略能够根据粒子状态随时改变:迭代前期,粒子速度会不断增加以便加快搜索最优解;迭代后期,粒子速度开始变慢以便搜索更广区域,避免陷入局部最优;当粒子陷入局部最优时,让该粒子根据选出的榜样粒子学习,以便逃出局部最优。另外评价粒子最优解的目标函数采用的是图像指数熵。仿真实验结果表明改进的粒子群阈值优化算法在单阈值和多阈值情况下解决了传统熵算法执行效率低和粒子群优化算法更新规则不灵活易于陷入局部最优问题,分割结果非常好,而且稳定、高效。 Concerning the not flexible update rules of the cooperative learning Particle Swarm Optimization (PSO) and comprehensive PSO, a new algorithm based on improved PSO for gray-sale image segmentation using multilevel thresholding was proposed. The update strategy of particles depends on the state of the particle in that algorithm: in the early iterations, the velocity of particle is increasing in order to speed up the search for optimal solution; later, the velocity of particle begins to decrease so that the particle can search for a broader area, avoiding to trap in local optimization; when particles was caught in local optimization, the particle begins to update its' velocity and position according to the chosen example particle that can make the particle escape from the local optimization; in addition, the object function of evaluating every particle's optimal solution is image exponential entropy. The simulation experiment results show that the new improved PSO solves the problems of the low execution efficiency of the traditional entropy algorithm and the not flexible update rules and easily falling into local optimization of the PSO, and its segmentation results are very good, stable and efficient in the case of single thresholding and multilevel thresholding.
出处 《计算机应用》 CSCD 北大核心 2012年第A02期147-150,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(NSFC60970003)
关键词 灰度图像分割 粒子群优化 协同学习 综合性学习 图像指数熵 多阈值 gray-scale image segmentation Particle Swarm Optimization (PSO) cooperative learning comprehensive learning image exponential entropy multilevel thresholding
  • 相关文献

参考文献13

  • 1FU K S, MUI J K. A survey on image segmentation [ J]. Pattern Recognition, 1981, 13(1) : 3 - 16.
  • 2OTSU N. A threshold selection method from gray-scale histograms [ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1979, 9(1):62-66.
  • 3SAHA P K, UDUPA J K. Optinmm image thresholding via class un- certainty and region homogeneity [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(7):689-706.
  • 4TOBIAS O J, SEARA R. Image segmentation by histogram threshol- ding using fuzzy sets [ J]. 1EEE Transactions on Image Processing, 2002, 11(12) : 1457 - 1465.
  • 5HU Q, HOU Z, NOWINSKI W. Supervised range-constrained thresholding [ J]. IEEE Transactions on Image Processing, 2006, 15(I) :228 -240.
  • 6PAL N R, PAL S K. Entropy: a new definition and applications [J]. IEEE Transactions on Systems, Man and Cybernetics, 1991, 21 (5) : 1260 - 1270.
  • 7van den BERGH F, ENGELBRECHT A P. A cooperative approach to particle swarm optimization [ J]. IEEE Transactions on Evolution- ary Computation, 2004, 8(3):225-239.
  • 8CLERC M, KENNEDY J. The particle swarm-explosion, stability and convergence in a multidimensional complex space[ J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1) :58 -73.
  • 9van den BERGH F. An analysis of particle swarm optimizers [ D]. Pretoria, South Africa: University of Pretoria, 2001.
  • 10SUGANTHAN P N. Particle swarm optimizer with neighbourhood operator [ C]// Proceedings of the IEEE Congress on Evolutionary Computation. [ S. I. ] : IEEE, 1999, 3:1958 - 1962.

同被引文献77

引证文献9

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部